993 resultados para SULFIDE-SILVER METHOD


Relevância:

30.00% 30.00%

Publicador:

Resumo:

About 100 parallel determinations of hydrogen sulfide by the volumetric and photometric methods were made in the layer of coexistence of oxygen with hydrogen sulfide (C layer). Thiosulfates were determined simultaneously. Regardless of locations of the stations, determinations by two methods coincided for the entire range of depths of occurrence of the C layer upper boundary. Within the C layer hydrogen sulfide readings obtained by these two independent methods agreed; thiosulfates were not found by direct measurements. Difference in the readings appears at the lower boundary of the C layer and below it, accompanied by appearance of thiosulfates. It is therefore concluded that it is correct to determine the upper boundary of the C layer by the iodometric method and to use concentration of hydrogen sulfide obtained by this method in the C layer to calculate rate of chemical oxidation of hydrogen sulfide in quasistationary processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Snake Pit hydrothermal field is located on the top of a neovolcanic rise on the Mid-Atlantic Ridge at sea depths between 3460 and 3510 m. It was surveyed during several oceanological expeditions including DSDP Legs. Additional scientific materials were obtained in 2002 and 2003 during expedition onboard R/V Akademik Mstislav Keldysh with two Mir deep-sea manned submersibles. Three eastern hydrothermal mounds (Moose, Beehive, and Fir Tree) are located on the upper part of the eastern slope of the rise over a common fractured pedestal composed of fragments of massive sulfides. The western group of hydrothermal deposits is encountered on the western slope of the axial graben. Within this mature hydrothermal field, which was formed over the past 4000 years, we studied morphology of the hydrothermal mounds, chemistry and mineralogy of hydrothermal deposits, chemistry of sulfide minerals, and isotope composition of sulfur in them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several hydrothermal sulfide structures were sampled using the Mir manned submersibles in the relatively shallow Lucky Strike vent field, Mid-Atlantic Ridge. Bathymetric position of these structures varies by approximately 100 m. Investigation of chemical and mineral compositions of hydrothermal ore occurrences led to the conclusion that the initial high-temperature ore-bearing solution ascending toward the surface became unstable and experienced phase separation beneath the ocean floor. The phase separation was responsible for bathymetric control of hydrothermal ore formation within the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Boundary Element Method is a powerful numerical technique well rooted in everyday engineering practice. This is shown by boundary element methods included in the most important commercial computer packages and in the continuous publication of books composed to explain the features of the method to beginners or practicing engineers. Our first paper in Computers & Structures on Boundary Elements was published in 1979 (C & S 10, pp. 351–362), so this Special Issue is for us not only the accomplishment of our obligation to show other colleagues the possibilities of a numerical technique in which we believe, but also the celebration of our particular silver jubilee with this Journal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple method of preparing Ag2CO3 nanoparticles utilising high area γ-alumina nanoneedles has been developed; these are promising antimicrobial agents against diverse bacterial strains. © The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ming deposit, Newfoundland Appalachians, is a metamorphosed (upper greenschist to lower amphibolite facies), Cambro-Ordovician, bimodalmafic volcanogenic massive sulfide (VMS) deposit that consists of several, spatially-associated, elongated orebodies composed of stratabound semimassive to massive sulfides and/or discordant sulfide stringers in a rhyodacitic footwall. Copper is the main commodity; however, the deposit contains precious metal-bearing zones with elevated Au grades. In this study, field observations, microscopy, and micro-analytical tools including electron microprobe, laser ablation inductively coupled plasma mass spectrometry, and secondary ion mass spectrometry were used to constrain the relative timing of precious metal emplacement, the physico-chemical conditions of hydrothermal fluid precipitation, and the sources of sulfur, precious metals, semi-metals and metals. The ore mineral assemblage is complex and indicates an intermediate sulfidation state. Pyrite and chalcopyrite are the dominant ore minerals with minor sphalerite and pyrrhotite, and trace galena, arsenopyrite and cubanite. Additional trace phases include tellurides, NiSb phases, sulfosalts, electrum, AgHg±Au alloys, and oxides. Silver phases and precious metals occur predominantly in semi-massive and massive sulfides as free grains, and as grains spatially associated with arsenopyrite and/or sulfosalts. Precious metal phases occurring between recrystallized pyrite and within cataclastic pyrite are rare. Hence, the complex ore assemblage and textures strongly suggest syngenetic precious metal emplacement, whereas metamorphism and deformation only internally and locally remobilized precious metal phases. The ore assemblage formed from reduced, acidic hydrothermal fluids over a range of temperatures (≈350 to below 260ºC). The abundance of telluride and Ag-bearing tetrahedrite, however, varies strongly between the different orebodies indicating variable ƒTe₂, ƒSe₂, mBi, and mSb within the hydrothermal fluids. The variations in the concentrations of semi-metals and metals (As, Bi, Hg, Sb, Se, Te), as well as Au and Ag, were due to variations in temperature but also to a likely contribution of magmatic fluids into the VMS hydrothermal system from presumably different geothermal reservoirs. Sulfur isotope studies indicate at least two sulfur sources: sulfur from thermochemically-reduced seawater sulfate and igneous sulfur. The source of igneous sulfur is the igneous footwall, direct magmatic fluid/volatiles, or both. Upper greenschist to lower amphibolite metamorphic conditions and deformation had no significant effect on the sulfur isotope composition of the sulfides at the Ming deposit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gasotransmitter hydrogen sulfide (H2S) is known as an important regulator in several physiological and pathological responses. Among the challenges facing the field is the accurate and reliable measurement of hydrogen sulfide bioavailability. We have reported an approach to discretely measure sulfide and sulfide pools using the monobromobimane (MBB) method coupled with reversed phase high-performance liquid chromatography (RP-HPLC). The method involves the derivatization of sulfide with excess MBB under precise reaction conditions at room temperature to form sulfide dibimane (SDB). The resultant fluorescent SDB is analyzed by RP-HPLC using fluorescence detection with the limit of detection for SDB (2 nM). Care must be taken to avoid conditions that may confound H2S measurement with this method. Overall, RP-HPLC with fluorescence detection of SDB is a useful and powerful tool to measure biological sulfide levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the physical-chemical surface properties of single-slit, single-groove subwavelength-structured silver films with high-resolution transmission electron microscopy and calculate exact solutions to Maxwell’s equations corresponding to recent far-field interferometry experiments using these structures. Contrary to a recent suggestion the surface analysis shows that the silver films are free of detectable contaminants. The finite-difference time-domain calculations, in excellent agreement with experiment, show a rapid fringe amplitude decrease in the near zone (slit-groove distance out to 3–4 wavelengths). Extrapolation to slit-groove distances beyond the near zone shows that the surface wave evolves to the expected bound surface plasmon polariton (SPP). Fourier analysis of these results indicates the presence of a distribution of transient, evanescent modes around the SPP that dephase and dissipate as the surface wave evolves from the near to the far zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 193 recovered core from the active PACMANUS hydrothermal field (eastern Manus Basin, Papua New Guinea) that provided an excellent opportunity to study mineralization related to a seafloor hydrothermal system hosted by felsic volcanic rocks. The purpose of this work is to provide a data set of mineral chemistry of the sulfide-oxide mineralization and associated gold occurrence in samples drilled at Sites 1188 and 1189. PACMANUS consists of five active vent sites, namely Rogers Ruins, Roman Ruins, Satanic Mills, Tsukushi, and Snowcap. In this work two sites were studied: Snowcap and Roman Ruins. Snowcap is situated in a water depth of 1670 meters below sea level [mbsl], covers a knoll of dacite-rhyodacite lava, and is characterized by low-temperature diffuse venting. Roman Ruin lies in a water depth of 1693-1710 mbsl, is 150 m across, and contains numerous large, active and inactive, columnar chimneys. Sulfide mineralogy at the Roman Ruins site is dominated by pyrite with lesser amounts of chalcopyrite, sphalerite, pyrrhotite, marcasite, and galena. Sulfide minerals are relatively rare at Snow Cap. These are dominated by pyrite with minor chalcopyrite and sphalerite and traces of pyrrhotite. Native gold has been found in a single sample from Hole 1189B (Roman Ruins). Oxide minerals are represented by Ti magnetite, magnetite, ilmenite, hercynite (Fe spinel), and less abundant Al-Mg rich chromite (average = 10.6 wt% Al2O3 and 5.8 wt% MgO), Fe-Ti oxides, and a single occurrence of pyrophanite (Mn Ti O3). Oxide mineralization is more developed at Snowcap, whereas sulfide minerals are more extensive and show better development at Roman Ruins. The mineralogy was obtained mainly by a detailed optical microscopy study. Oxide mineral identifications were confirmed by X-ray diffraction, and mineral chemistry was determined by electron probe microanalyses.