981 resultados para SUGARCANE
Resumo:
Chloromethylfurfural (CMF), a valuable intermediate for the production of chemicals and fuel, can be derived in high yields from the cellulose component of biomass. This study examined the effect of sugar cane bagasse components and biomass architecture on CMF/bio-oil yield using a HCl/dichloroethane biphasic system. The type of pretreatment affected bio-oil yield, as the CMF yield increased with increasing glucan content. CMF yield reached 81.9% with bagasse pretreated by acidified aqueous ionic liquid, which had a glucan content of 81.6%. The lignin content of the biomass was found to significantly reduce CMF yield, which was only 62.3% with acid-catalysed steam exploded sample having a lignin content of 29.6%. The change of CMF yield may be associated with fibre surface changes as a result of pretreatment. The hemicellulose content also impacted negatively on CMF yield. Storage of the bio-oil in chlorinated solvents prevented CMF degradation.
Resumo:
Sugarcane streak mosaic virus (SCSMV), causes mosaic disease of sugarcane and is thought to belong to a new undescribed genus in the family Potyviridae. The coat protein (CP) gene from the Andhra Pradesh (AP) isolate of SCSMV (SCSMV AP) was cloned and expressed in Escherichia coli. The recombinant coat protein was used to raise high quality antiserum. The CP antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) based assay for the detection and discrimination of SCSMV isolates in South India. The sequence of the cloned PCR products encoding 3'untranslated region (UTR) and CP regions of the virus isolates from three different locations in South India viz. Tanuku (Coastal Andhra Pradesh), Coimbatore (Tamil Nadu) and Hospet (Karnataka) was compared with that of SCSMV AP The analysis showed that they share 89.4, 89.5 and 90% identity respectively at the nucleotide level. This suggests that the isolates causing mosaic disease of sugarcane in South India are indeed strains of SCSMV In addition, the sensitivity of the IC-RT-PCR was compared with direct antigen coating-enzyme linked immunosorbent assay (DAC-ELISA) and dot-blot immunobinding assays and was found to be more sensitive and hence could be used to detect the presence of virus in sugarcane breeding, germplasm centres and in quarantine programs.
Resumo:
p.1-11
Resumo:
p.1-11
Resumo:
Five laboratory incubation experiments were carried out to assess the salinity-induced changes in the microbial use of sugarcane filter cake added to soil. The first laboratory experiment was carried out to prove the hypothesis that the lower content of fungal biomass in a saline soil reduces the decomposition of a complex organic substrate in comparison to a non-saline soil under acidic conditions. Three different rates (0.5, 1.0, and 2.0%) of sugarcane filter cake were added to both soils and incubated for 63 days at 30°C. In the saline control soil without amendment, cumulative CO2 production was 70% greater than in the corresponding non-saline control soil, but the formation of inorganic N did not differ between these two soils. However, nitrification was inhibited in the saline soil. The increase in cumulative CO2 production by adding filter cake was similar in both soils, corresponding to 29% of the filter cake C at all three addition rates. Also the increases in microbial biomass C and biomass N were linearly related to the amount of filter cake added, but this increase was slightly higher for both properties in the saline soil. In contrast to microbial biomass, the absolute increase in ergosterol content in the saline soil was on average only half that in the non-saline soil and it showed also strong temporal changes during the incubation: A strong initial increase after adding the filter cake was followed by a rapid decline. The addition of filter cake led to immobilisation of inorganic N in both soils. This immobilisation was not expected, because the total C-to-total N ratio of the filter cake was below 13 and the organic C-to-organic N ratio in the 0.5 M K2SO4 extract of this material was even lower at 9.2. The immobilisation was considerably higher in the saline soil than in the non-saline soil. The N immobilisation capacity of sugarcane filter cake should be considered when this material is applied to arable sites at high rations. The second incubation experiment was carried out to examine the N immobilizing effect of sugarcane filter cake (C/N ratio of 12.4) and to investigate whether mixing it with compost (C/N ratio of 10.5) has any synergistic effects on C and N mineralization after incorporation into the soil. Approximately 19% of the compost C added and 37% of the filter cake C were evolved as CO2, assuming that the amendments had no effects on the decomposition of soil organic C. However, only 28% of the added filter cake was lost according to the total C and d13C values. Filter cake and compost contained initially significant concentrations of inorganic N, which was nearly completely immobilized between day 7 and 14 of the incubation in most cases. After day 14, N re-mineralization occurred at an average rate of 0.73 µg N g-1 soil d-1 in most amendment treatments, paralleling the N mineralization rate of the non-amended control without significant difference. No significant net N mineralization from the amendment N occurred in any of the amendment treatments in comparison to the control. The addition of compost and filter cake resulted in a linear increase in microbial biomass C with increasing amounts of C added. This increase was not affected by differences in substrate quality, especially the three times larger content of K2SO4 extractable organic C in the sugarcane filter cake. In most amendment treatments, microbial biomass C and biomass N increased until the end of the incubation. No synergistic effects could be observed in the mixture treatments of compost and sugarcane filter cake. The third 42-day incubation experiment was conducted to answer the questions whether the decomposition of sugarcane filter cake also result in immobilization of nitrogen in a saline alkaline soil and whether the mixing of sugarcane filter cake with glucose (adjusted to a C/N ratio of 12.5 with (NH4)2SO4) change its decomposition. The relative percentage CO2 evolved increased from 35% of the added C in the pure 0.5% filter cake treatment to 41% in the 0.5% filter cake +0.25% glucose treatment to 48% in the 0.5% filter cake +0.5% glucose treatment. The three different amendment treatments led to immediate increases in microbial biomass C and biomass N within 6 h that persisted only in the pure filter cake treatment until the end of the incubation. The fungal cell-membrane component ergosterol showed initially an over-proportionate increase in relation to microbial biomass C that fully disappeared at the end of the incubation. The cellulase activity showed a 5-fold increase after filter cake addition, which was not further increased by the additional glucose amendment. The cellulase activity showed an exponential decline to values around 4% of the initial value in all treatments. The amount of inorganic N immobilized from day 0 to day 14 increased with increasing amount of C added in comparison to the control treatment. Since day 14, the immobilized N was re-mineralized at rates between 1.31 and 1.51 µg N g-1 soil d-1 in the amendment treatments and was thus more than doubled in comparison with the control treatment. This means that the re-mineralization rate is independent from the actual size of the microbial residues pool and also independent from the size of the soil microbial biomass. Other unknown soil properties seem to form a soil-specific gate for the release of inorganic N. The fourth incubation experiment was carried out with the objective of assessing the effects of salt additions containing different anions (Cl-, SO42-, HCO3-) on the microbial use of sugarcane filter cake and dhancha leaves amended to inoculated sterile quartz sand. In the subsequent fifth experiment, the objective was to assess the effects of inoculum and temperature on the decomposition of sugar cane filter cake. In the fourth experiment, sugarcane filter cake led to significantly lower respiration rates, lower contents of extractable C and N, and lower contents of microbial biomass C and N than dhancha leaves, but to a higher respiratory quotient RQ and to a higher content of the fungal biomarker ergosterol. The RQ was significantly increased after salt addition, when comparing the average of all salinity treatments with the control. Differences in anion composition had no clear effects on the RQ values. In experiment 2, the rise in temperature from 20 to 40°C increased the CO2 production rate by a factor of 1.6, the O2 consumption rate by a factor of 1.9 and the ergosterol content by 60%. In contrast, the contents of microbial biomass N decreased by 60% and the RQ by 13%. The effects of the inoculation with a saline soil were in most cases negative and did not indicate a better adaptation of these organisms to salinity. The general effects of anion composition on microbial biomass and activity indices were small and inconsistent. Only the fraction of 0.5 M K2SO4 extractable C and N in non-fumigated soil was consistently increased in the 1.2 M NaHCO3 treatment of both experiments. In contrast to the small salinity effects, the quality of the substrate has overwhelming effects on microbial biomass and activity indices, especially on the fungal part of the microbial community.
Resumo:
There are currently concerns within some sugar industries that long-term monoculture has led to soil degradation and consequent yield decline. An investigation was conducted in Swaziland to assess the effects of fallowing and green manuring practices, over a seven-month period, on sugarcane yields and the physical properties of a poorly draining clay soil. In the subsequent first sugarcane crop after planting, yields were improved from 129 t ha(-1) under continuous sugarcane to 141-144 t ha(-1) after fallowing and green manuring, but there were no significant responses in the first and second ratoon crops. Also, in the first crop after planting, root length index increased from 3.5 km m(-2) under continuous sugarcane to 5.2-6.8 km m(-2) after fallowing, and improved rooting was still evident in the first ratoon crop where there had been soil drying during the fallow period. Soil bulk density, total porosity and water-holding capacity were not affected by the fallowing practices. However, air-filled porosity increased from 11% under continuous sugarcane to 16% after fallowing, and steady state ponded infiltration rates were increased from 0.61 mm h(-1) to 1.34 mm h(-1), but these improvements were no longer evident after a year back under sugarcane. Levels of soil organic matter were reduced in all cases, probably as a result of the tillage operations involved. In the plant crop, root length was well correlated with air-filled porosity, indicating the importance of improving belowground air supply for crop production on poorly draining clay soils.
Resumo:
A model of sugarcane digestion was applied to indicate the suitability of various locally available supplements for enhancing milk production of Indian crossbred dairy cattle. Milk production was calculated according to simulated energy, lipogenic, glucogenic and aminogenic substrate availability. The model identified the most limiting substrate for milk production from different sugarcane-based diets. For sugarcane tops/urea fed alone, milk production was most limited by amino acid followed by long chain fatty acid availability. Among the protein-rich oil cake supplements at 100, 200 and 300 g supplement/kg total DM, cottonseed oil cake proved superior with a milk yield of 5.5, 7.3 and 8.3 kg/day, respectively. This was followed by mustard oil cake with 5.1, 6.5 and 7.6 kg/day, respectively. In the case of a protein-rich supplement (fish meal), milk yield was limited to 6.6 kg/day due to a shortage of long chain fatty acids. However, at 300 g of supplementation, energy became limiting, with a milk yield of 6.7 kg/day. Supplementation with rice bran and rice polishings at 100, 200 and 300 g restricted milk yield to 4.3, 4.9 and 5.5 and 4.5, 5.3 and 6.1 kg/day, respectively, and amino acids became the factor limiting milk production. The diet comprising basal sugarcane tops supplemented by leguminous fodder, dry fodder (e.g. rice or wheat straw) and concentrates at levels of 100, 200 and 300 g supplements/kg total diet DM proved to be the most balanced with a milk yield of 5.1, 6.7 and 9.0 kg/day, respectively.
Resumo:
Rats and mice have traditionally been considered one of the most important pests of sugarcane. However, "control" campaigns are rarely specific to the target species, and can have an effect on local wildlife, in particular non-pest rodent species. The objective of this study was to distinguish between rodent species that are pests and those that are not, and to identify patterns of food utilization by the rodents in the sugarcane crop complex. Within the crop complex, subsistence crops like maize, sorghum, rice, and bananas, which are grown alongside the sugarcane, are also subject to rodent damage. Six native rodent species were trapped in the Papaloapan River Basin of the State of Veracruz; the cotton rat (Sigmodon hispidus), the rice rat (Oryzomys couesi), the small rice rat (O. chapmani), the white footed mouse (Peromyscus leucopus), the golden mouse (Reithrodontomys sumichrasti), and the pigmy mouse (Baiomys musculus). In a stomach content analysis, the major food components for the cotton rat, the rice rat and the small rice rat were sugarcane (4.9 to 30.1 %), seed (2.7 to 22.9%), and vegetation (0.9 to 29.8%); while for the golden mouse and the pigmy mouse the stomach content was almost exclusively seed (98 to 100%). The authors consider the first three species to be pests of the sugarcane crop complex, while the last two species are not.
Resumo:
Over the next few decades, it is expected that increasing fossil fuel prices will lead to a proliferation of energy crop cultivation initiatives. The environmental sustainability of these activities is thus a pressing issue—particularly when they take place in vulnerable regions, such as West Africa. In more general terms, the effect of increased CO2 concentrations and higher temperatures on biomass production and evapotranspiration affects the evolution of the global hydrological and carbon cycles. Investigating these processes for a C4 crop, such as sugarcane, thus provides an opportunity both to extend our understanding of the impact of climate change, and to assess our capacity to model the underpinning processes. This paper applies a process-based crop model to sugarcane in Ghana (where cultivation is planned), and the São Paulo region of Brazil (which has a well-established sugarcane industry). We show that, in the Daka River region of Ghana, provided there is sufficient irrigation, it is possible to generate approximately 75% of the yield achieved in the São Paulo region. In the final part of the study, the production of sugarcane under an idealized temperature increase climate change scenario is explored. It is shown that doubling CO2 mitigates the degree of water stress associated with a 4 °C increase in temperature.
Resumo:
Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO(2)]. The effects of increased [CO(2)] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (similar to 370 ppm) and elevated (similar to 720 ppm) [CO(2)] during 50 weeks in open-top chambers. The plants grown under elevated CO(2) showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO(2)]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO(2). The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO(2)], and that this might be related, as previously observed for maize and sorghum, to transient drought stress.
Resumo:
P>Modern sugarcane (Saccharum spp.) is the leading sugar crop and a primary energy crop. It has the highest level of `vertical` redundancy (2n = 12x = 120) of all polyploid plants studied to date. It was produced about a century ago through hybridization between two autopolyploid species, namely S. officinarum and S. spontaneum. In order to investigate the genome dynamics in this highly polyploid context, we sequenced and compared seven hom(oe)ologous haplotypes (bacterial artificial chromosome clones). Our analysis revealed a high level of gene retention and colinearity, as well as high gene structure and sequence conservation, with an average sequence divergence of 4% for exons. Remarkably, all of the hom(oe)ologous genes were predicted as being functional (except for one gene fragment) and showed signs of evolving under purifying selection, with the exception of genes within segmental duplications. By contrast, transposable elements displayed a general absence of colinearity among hom(oe)ologous haplotypes and appeared to have undergone dynamic expansion in Saccharum, compared with sorghum, its close relative in the Andropogonea tribe. These results reinforce the general trend emerging from recent studies indicating the diverse and nuanced effect of polyploidy on genome dynamics.
Resumo:
The numbers of culturable diazotrophic endophytic bacteria (CDEB) from roots stems and leaves of sugarcane submitted to organic inorganic or no fertilization were compared In order to determine the size of the N(2) fixing populations the Most Probable Number technique (MPN) was used The quantification of diazotrophic bacteria by using the acetylene reduction assay (ARA) was more accurate than observing the bacterial growth in the vials to confirm N(2) fixing capability the detection of gene nifH was performed on a sample of 105 Isolated bacteria The production of extracellular enzymes involved in the penetration of the plants by the bacteria was also studied The results showed that organic fertilization enhances the number of CDEB when compared with conventional fertilization used throughout the growing season The maximum number of bacteria was detected in the roots Roots and stems presented the greatest number of CDEB in the middle of the cropping season and in leaves numbers varied according to the treatment Using two pairs of primers and two different methods the nifH gene was found in 104 of the 105 tested isolates Larger amounts of pectinase were released by isolates from sugarcane treated with conventional fertilizers (66%) whereas larger amounts of cellulase were released by strains isolated from sugarcane treated with organic fertilizers (80%) (C) 2010 Elsevier Masson SAS All rights reserved