982 resultados para SUBSTRATE SPECIFICITY
Resumo:
A .beta.-glucosidase and an endocellulase were purified from the culture filtrates of a thermophilic cellulolytic fungus Humicola insolens. Both the preparations were homogeneous by PAGE, ultracentrifugation and gel filtration (Mr 45,000). Ouchterlony immunodiffusion showed complete cross reactivity between the antibodies and the two enzyme antigens, indicating the presence of a common epitope on the two enzyme proteins. The two enzymes, however, differ in their amino acid composition and their substrate specificity. .beta.-Glucosidase acts on p-nitrophenyl .beta.-D-glucopyranoside and hydrolyses cellulose to release mainly glucose and small amounts of cellobiose from the non-reducing end. On the other hand, endocellulase hydrolyses cellulose to release cellopentaose, cellotetraose, cellotriose along with cellobiose and glucose and also hydrolyses larch wood xylan.
Resumo:
The analysis of lipid compositions from biological samples has become increasingly important. Lipids have a role in cardiovascular disease, metabolic syndrome and diabetes. They also participate in cellular processes such as signalling, inflammatory response, aging and apoptosis. Also, the mechanisms of regulation of cell membrane lipid compositions are poorly understood, partially because a lack of good analytical methods. Mass spectrometry has opened up new possibilities for lipid analysis due to its high resolving power, sensitivity and the possibility to do structural identification by fragment analysis. The introduction of Electrospray ionization (ESI) and the advances in instrumentation revolutionized the analysis of lipid compositions. ESI is a soft ionization method, i.e. it avoids unwanted fragmentation the lipids. Mass spectrometric analysis of lipid compositions is complicated by incomplete separation of the signals, the differences in the instrument response of different lipids and the large amount of data generated by the measurements. These factors necessitate the use of computer software for the analysis of the data. The topic of the thesis is the development of methods for mass spectrometric analysis of lipids. The work includes both computational and experimental aspects of lipid analysis. The first article explores the practical aspects of quantitative mass spectrometric analysis of complex lipid samples and describes how the properties of phospholipids and their concentration affect the response of the mass spectrometer. The second article describes a new algorithm for computing the theoretical mass spectrometric peak distribution, given the elemental isotope composition and the molecular formula of a compound. The third article introduces programs aimed specifically for the analysis of complex lipid samples and discusses different computational methods for separating the overlapping mass spectrometric peaks of closely related lipids. The fourth article applies the methods developed by simultaneously measuring the progress curve of enzymatic hydrolysis for a large number of phospholipids, which are used to determine the substrate specificity of various A-type phospholipases. The data provides evidence that the substrate efflux from bilayer is the key determining factor for the rate of hydrolysis.
Resumo:
Proteases belonging to the M20 family are characterized by diverse substrate specificity and participate in several metabolic pathways. The Staphylococcus aureus metallopeptidase, Sapep, is a member of the aminoacylase-I/M20 protein family. This protein is a Mn2+-dependent dipeptidase. The crystal structure of this protein in the Mn2+-bound form and in the open, metal-free state suggests that large interdomain movements could potentially regulate the activity of this enzyme. We note that the extended inactive conformation is stabilized by a disulfide bond in the vicinity of the active site. Although these cysteines, Cys(155) and Cys(178), are not active site residues, the reduced form of this enzyme is substantially more active as a dipeptidase. These findings acquire further relevance given a recent observation that this enzyme is only active in methicillin-resistant S. aureus. The structural and biochemical features of this enzyme provide a template for the design of novel methicillin-resistant S. aureus-specific therapeutics.
Resumo:
The cell envelope of Mycobacterium tuberculosis (M. tuberculosis) is composed of a variety of lipids including mycolic acids, sulpholipids, lipoarabinomannans, etc., which impart rigidity crucial for its survival and pathogenesis. Acyl CoA carboxylase (ACC) provides malonyl-CoA and methylmalonyl-CoA, committed precursors for fatty acid and essential for mycolic acid synthesis respectively. Biotin Protein Ligase (BPL/BirA) activates apo-biotin carboxyl carrier protein (BCCP) by biotinylating it to an active holo-BCCP. A minimal peptide (Schatz), an efficient substrate for Escherichia coli BirA, failed to serve as substrate for M. tuberculosis Biotin Protein Ligase (MtBPL). MtBPL specifically biotinylates homologous BCCP domain, MtBCCP87, but not EcBCCP87. This is a unique feature of MtBPL as EcBirA lacks such a stringent substrate specificity. This feature is also reflected in the lack of self/promiscuous biotinylation by MtBPL. The N-terminus/HTH domain of EcBirA has the selfbiotinable lysine residue that is inhibited in the presence of Schatz peptide, a peptide designed to act as a universal acceptor for EcBirA. This suggests that when biotin is limiting, EcBirA preferentially catalyzes, biotinylation of BCCP over selfbiotinylation. R118G mutant of EcBirA showed enhanced self and promiscuous biotinylation but its homologue, R69A MtBPL did not exhibit these properties. The catalytic domain of MtBPL was characterized further by limited proteolysis. Holo-MtBPL is protected from proteolysis by biotinyl-59 AMP, an intermediate of MtBPL catalyzed reaction. In contrast, apo-MtBPL is completely digested by trypsin within 20 min of co-incubation. Substrate selectivity and inability to promote self biotinylation are exquisite features of MtBPL and are a consequence of the unique molecular mechanism of an enzyme adapted for the high turnover of fatty acid biosynthesis.
Resumo:
A versatile fungus isolated in our laboratory and identified as Mucor piriformis has been shown to effect novel and preparatively useful transformations in steroids and morphine alkaloids. The organism very effectively carries out hydroxylation of various C-19 and C-21 steroids at 7 and 14-positions. Although the organism is capable of catalysing hydroxylation at 6 beta and 11 alpha-positions, these are not the major activities. The 14 alpha-hydroxylase appears to have a broad substrate specificity. However, steroids with a bulky substitution at C-17 alpha-position or without the 4-en-3-one group are not accepted as substrates by the 14 alpha-hydroxylase system. Studies have demonstrated how various C-19 and C-21 steroids can be modified to yield new structures which are either difficult to prepare by traditional methods or hitherto unknown. The organism also very efficiently and selectively carries out the N-dealkylation of thebaine and its N-variants. Interestingly, the nor-compound formed does not get further metabolized. Since thebaine is very often used as a starting material to synthesize various morphine agonists as well as antagonists, and one of the steps involved in their preparation is the N-dealkylation reaction, the microbial process could certainly offer an alternative approach.
Resumo:
Angiogenin is a protein belonging to the superfamily of RNase A. The RNase activity of this protein is essential for its angiogenic activity. Although members of the RNase A family carry out RNase activity, they differ markedly in their strength and specificity. In this paper, we address the problem of higher specificity of angiogenin towards cytosine against uracil in the first base binding position. We have carried out extensive nano-second level molecular dynamics(MD) computer simulations on the native bovine angiogenin and on the CMP and UMP complexes of this protein in aqueous medium with explicit molecular solvent. The structures thus generated were subjected to a rigorous free energy component analysis to arrive at a plausible molecular thermodynamic explanation for the substrate specificity of angiogenin.
Resumo:
Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs) containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1) domains, while the membrane-distal (D2) domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR) and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A). While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.
Resumo:
Background: Bacteria such as Escherichia coli and Salmonella typhimurium can utilize acetate as the sole source of carbon and energy. Acetate kinase (AckA) and phosphotransacetylase (Pta), key enzymes of acetate utilization pathway, regulate flux of metabolites in glycolysis, gluconeogenesis, TCA cycle, glyoxylate bypass and fatty acid metabolism. Results: Here we report kinetic characterization of S. typhimurium AckA (StAckA) and structures of its unliganded (Form-I, 2.70 angstrom resolution) and citrate-bound (Form-II, 1.90 angstrom resolution) forms. The enzyme showed broad substrate specificity with k(cat)/K-m in the order of acetate > propionate > formate. Further, the K-m for acetyl-phosphate was significantly lower than for acetate and the enzyme could catalyze the reverse reaction (i.e. ATP synthesis) more efficiently. ATP and Mg2+ could be substituted by other nucleoside 5'-triphosphates (GTP, UTP and CTP) and divalent cations (Mn2+ and Co2+), respectively. Form-I StAckA represents the first structural report of an unliganded AckA. StAckA protomer consists of two domains with characteristic beta beta beta alpha beta alpha beta alpha topology of ASKHA superfamily of proteins. These domains adopt an intermediate conformation compared to that of open and closed forms of ligand-bound Methanosarcina thermophila AckA (MtAckA). Spectroscopic and structural analyses of StAckA further suggested occurrence of inter-domain motion upon ligand-binding. Unexpectedly, Form-II StAckA structure showed a drastic change in the conformation of residues 230-300 compared to that of Form-I. Further investigation revealed electron density corresponding to a citrate molecule in a pocket located at the dimeric interface of Form-II StAckA. Interestingly, a similar dimeric interface pocket lined with largely conserved residues could be identified in Form-I StAckA as well as in other enzymes homologous to AckA suggesting that ligand binding at this pocket may influence the function of these enzymes. Conclusions: The biochemical and structural characterization of StAckA reported here provides insights into the biochemical specificity, overall fold, thermal stability, molecular basis of ligand binding and inter-domain motion in AckA family of enzymes. Dramatic conformational differences observed between unliganded and citrate-bound forms of StAckA led to identification of a putative ligand-binding pocket at the dimeric interface of StAckA with implications for enzymatic function.
Resumo:
Peptidase N (PepN), the sole M1 family member in Escherichia coli, displays broad substrate specificity and modulates stress responses: it lowers resistance to sodium salicylate (NaSal)-induced stress but is required during nutritional downshift and high temperature (NDHT) stress. The expression of PepN does not significantly change during different growth phases in LB or NaSal-induced stress; however, PepN amounts are lower during NDHT stress. To gain mechanistic insights on the roles of catalytic activity of PepN in modulating these two stress responses, alanine mutants of PepN replacing E264 (GAMEN motif) and E298 (HEXXH motif) were generated. There are no major structural changes between purified wild type (WT) and mutant proteins, which are catalytically inactive. Importantly, growth profiles of Delta pepN upon expression of WT or mutant proteins demonstrated the importance of catalytic activity during NDHT but not NaSal-induced stress. Further fluorescamine reactivity studies demonstrated that the catalytic activity of PepN is required to generate higher intracellular amounts of free N-terminal amino acids; consequently, the lower growth of Delta pepN during NDHT stress increases with high amounts of casamino acids. Together, this study sheds insights on the expression and functional roles of the catalytic activity of PepN during adaptation to NDHT stress. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Significance: The bi-domain protein tyrosine phosphatases (PTPs) exemplify functional evolution in signaling proteins for optimal spatiotemporal signal transduction. Bi-domain PTPs are products of gene duplication. The catalytic activity, however, is often localized to one PTP domain. The inactive PTP domain adopts multiple functional roles. These include modulation of catalytic activity, substrate specificity, and stability of the bi-domain enzyme. In some cases, the inactive PTP domain is a receptor for redox stimuli. Since multiple bi-domain PTPs are concurrently active in related cellular pathways, a stringent regulatory mechanism and selective cross-talk is essential to ensure fidelity in signal transduction. Recent Advances: The inactive PTP domain is an activator for the catalytic PTP domain in some cases, whereas it reduces catalytic activity in other bi-domain PTPs. The relative orientation of the two domains provides a conformational rationale for this regulatory mechanism. Recent structural and biochemical data reveal that these PTP domains participate in substrate recruitment. The inactive PTP domain has also been demonstrated to undergo substantial conformational rearrangement and oligomerization under oxidative stress. Critical Issues and Future Directions: The role of the inactive PTP domain in coupling environmental stimuli with catalytic activity needs to be further examined. Another aspect that merits attention is the role of this domain in substrate recruitment. These aspects have been poorly characterized in vivo. These lacunae currently restrict our understanding of neo-functionalization of the inactive PTP domain in the bi-domain enzyme. It appears likely that more data from these research themes could form the basis for understanding the fidelity in intracellular signal transduction.
Resumo:
Thiolases are enzymes involved in lipid metabolism. Thiolases remove the acetyl-CoA moiety from 3-ketoacyl-CoAs in the degradative reaction. They can also catalyze the reverse Claisen condensation reaction, which is the first step of biosynthetic processes such as the biosynthesis of sterols and ketone bodies. In human, six distinct thiolases have been identified. Each of these thiolases is different from the other with respect to sequence, oligomeric state, substrate specificity and subcellular localization. Four sequence fingerprints, identifying catalytic loops of thiolases, have been described. In this study genome searches of two mycobacterial species (Mycobacterium tuberculosis and Mycobacterium smegmatis), were carried out, using the six human thiolase sequences as queries. Eight and thirteen different thiolase sequences were identified in M. tuberculosis and M. smegmatis, respectively. In addition, thiolase-like proteins (one encoded in the Mtb and two in the Msm genome) were found. The purpose of this study is to classify these mostly uncharacterized thiolases and thiolase-like proteins. Several other sequences obtained by searches of genome databases of bacteria, mammals and the parasitic protist family of the Trypanosomatidae were included in the analysis. Thiolase-like proteins were also found in the trypanosomatid genomes, but not in those of mammals. In order to study the phylogenetic relationships at a high confidence level, additional thiolase sequences were included such that a total of 130 thiolases and thiolase-like protein sequences were used for the multiple sequence alignment. The resulting phylogenetic tree identifies 12 classes of sequences, each possessing a characteristic set of sequence fingerprints for the catalytic loops. From this analysis it is now possible to assign the mycobacterial thiolases to corresponding homologues in other kingdoms of life. The results of this bioinformatics analysis also show interesting differences between the distributions of M. tuberculosis and M. smegmatis thiolases over the 12 different classes. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Thiolases catalyze the degradation and synthesis of 3-ketoacyl-CoA molecules. Here, the crystal structures of a T1-like thiolase (MSM-13 thiolase) from Mycobacterium smegmatis in apo and liganded forms are described. Systematic comparisons of six crystallographically independent unliganded MSM-13 thiolase tetramers (dimers of tight dimers) from three different crystal forms revealed that the two tight dimers are connected to a rigid tetramerization domain via flexible hinge regions, generating an asymmetric tetramer. In the liganded structure, CoA is bound to those subunits that are rotated towards the tip of the tetramerization loop of the opposing dimer, suggesting that this loop is important for substrate binding. The hinge regions responsible for this rotation occur near Val123 and Arg149. The L alpha 1-covering loop-L alpha 2 region, together with the N beta 2-N alpha 2 loop of the adjacent subunit, defines a specificity pocket that is larger and more polar than those of other tetrameric thiolases, suggesting that MSM-13 thiolase has a distinct substrate specificity. Consistent with this finding, only residual activity was detected with acetoacetyl-CoA as the substrate in the degradative direction. No activity was observed with acetyl-CoA in the synthetic direction. Structural comparisons with other well characterized thiolases suggest that MSM-13 thiolase is probably a degradative thiolase that is specific for 3-ketoacyl-CoA molecules with polar, bulky acyl chains.
Resumo:
This work describes the design and synthesis of a true, heterogeneous, asymmetric catalyst. The catalyst consists of a thin film that resides on a high-surface- area hydrophilic solid and is composed of a chiral, hydrophilic organometallic complex dissolved in ethylene glycol. Reactions of prochiral organic reactants take place predominantly at the ethylene glycol-bulk organic interface.
The synthesis of this new heterogeneous catalyst is accomplished in a series of designed steps. A novel, water-soluble, tetrasulfonated 2,2'-bis (diphenylphosphino)-1,1'-binaphthyl (BINAP-4S0_3Na) is synthesized by direct sulfonation of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP). The rhodium (I) complex of BINAP-4SO_3Na is prepared and is shown to be the first homogeneous catalyst to perform asymmetric reductions of prochiral 2-acetamidoacrylic acids in neat water with enantioselectivities as high as those obtained in non-aqueous solvents. The ruthenium (II) complex, [Ru(BINAP-4SO_3Na)(benzene)Cl]Cl is also synthesized and exhibits a broader substrate specificity as well as higher enantioselectivities for the homogeneous asymmetric reduction of prochiral 2-acylamino acid precursors in water. Aquation of the ruthenium-chloro bond in water is found to be detrimental to the enantioselectivity with some substrates. Replacement of water by ethylene glycol results in the same high e.e's as those found in neat methanol. The ruthenium complex is impregnated onto a controlled pore-size glass CPG-240 by the incipient wetness technique. Anhydrous ethylene glycol is used as the immobilizing agent in this heterogeneous catalyst, and a non-polar 1:1 mixture of chloroform and cyclohexane is employed as the organic phase.
Asymmetric reduction of 2-(6'-methoxy-2'-naphthyl)acrylic acid to the non-steroidal anti-inflammatory agent, naproxen, is accomplished with this heterogeneous catalyst at a third of the rate observed in homogeneous solution with an e.e. of 96% at a reaction temperature of 3°C and 1,400 psig of hydrogen. No leaching of the ruthenium complex into the bulk organic phase is found at a detection limit of 32 ppb. Recycling of the catalyst is possible without any loss in enantioselectivity. Long-term stability of this new heterogeneous catalyst is proven by a self-assembly test. That is, under the reaction conditions, the individual components of the present catalytic system self-assemble into the supported-catalyst configuration.
The strategies outlined here for the design and synthesis of this new heterogeneous catalyst are general, and can hopefully be applied to the development of other heterogeneous, asymmetric catalysts.
Resumo:
The genomes of many positive stranded RNA viruses and of all retroviruses are translated as large polyproteins which are proteolytically processed by cellular and viral proteases. Viral proteases are structurally related to two families of cellular proteases, the pepsin-like and trypsin-like proteases. This thesis describes the proteolytic processing of several nonstructural proteins of dengue 2 virus, a representative member of the Flaviviridae, and describes methods for transcribing full-length genomic RNA of dengue 2 virus. Chapter 1 describes the in vitro processing of the nonstructural proteins NS2A, NS2B and NS3. Chapter 2 describes a system that allows identification of residues within the protease that are directly or indirectly involved with substrate recognition. Chapter 3 describes methods to produce genome length dengue 2 RNA from cDNA templates.
The nonstructural protein NS3 is structurally related to viral trypsinlike proteases from the alpha-, picorna-, poty-, and pestiviruses. The hypothesis that the flavivirus nonstructural protein NS3 is a viral proteinase that generates the termini of several nonstructural proteins was tested using an efficient in vitro expression system and antisera specific for the nonstructural proteins NS2B and NS3. A series of cDNA constructs was transcribed using T7 RNA polymerase and the RNA translated in reticulocyte lysates. Proteolytic processing occurred in vitro to generate NS2B and NS3. The amino termini of NS2B and NS3 produced in vitro were found to be the same as the termini of NS2B and NS3 isolated from infected cells. Deletion analysis of cDNA constructs localized the protease domain necessary and sufficient for correct cleavage to the first 184 amino acids of NS3. Kinetic analysis of processing events in vitro and experiments to examine the sensitivity of processing to dilution suggested that an intramolecular cleavage between NS2A and NS2B preceded an intramolecular cleavage between NS2B and NS3. The data from these expression experiments confirm that NS3 is the viral proteinase responsible for cleavage events generating the amino termini of NS2B and NS3 and presumably for cleavages generating the termini of NS4A and NS5 as well.
Biochemical and genetic experiments using viral proteinases have defined the sequence requirements for cleavage site recognition, but have not identified residues within proteinases that interact with substrates. A biochemical assay was developed that could identify residues which were important for substrate recognition. Chimeric proteases between yellow fever and dengue 2 were constructed that allowed mapping of regions involved in substrate recognition, and site directed mutagenesis was used to modulate processing efficiency.
Expression in vitro revealed that the dengue protease domain efficiently processes the yellow fever polyprotein between NS2A and NS2B and between NS2B and NS3, but that the reciprocal construct is inactive. The dengue protease processes yellow fever cleavage sites more efficiently than dengue cleavage sites, suggesting that suboptimal cleavage efficiency may be used to increase levels of processing intermediates in vivo. By mutagenizing the putative substrate binding pocket it was possible to change the substrate specificity of the yellow fever protease; changing a minimum of three amino acids in the yellow fever protease enabled it to recognize dengue cleavage sites. This system allows identification of residues which are directly or indirectly involved with enzyme-substrate interaction, does not require a crystal structure, and can define the substrate preferences of individual members of a viral proteinase family.
Full-length cDNA clones, from which infectious RNA can be transcribed, have been developed for a number of positive strand RNA viruses, including the flavivirus type virus, yellow fever. The technology necessary to transcribe genomic RNA of dengue 2 virus was developed in order to better understand the molecular biology of the dengue subgroup. A 5' structural region clone was engineered to transcribe authentic dengue RNA that contains an additional 1 or 2 residues at the 5' end. A 3' nonstructural region clone was engineered to allow production of run off transcripts, and to allow directional ligation with the 5' structural region clone. In vitro ligation and transcription produces full-length genomic RNA which is noninfectious when transfected into mammalian tissue culture cells. Alternative methods for constructing cDNA clones and recovering live dengue virus are discussed.
Resumo:
Jerdonobin and jerdofibrase are two serine proteases purified from the venom of Trimeresurus jerdonii. The Michaelis constant K-m and the catalytic rate constant K-cat of jerdonobin or jerdofibrase on three chromogenic substrates, H-D-Pro-Phe-Arg-pNA (S2302), H-D-Phe-pipecolyl-Arg-pNA (S2238), and H-D-Val-Leu-Lys-pNA (S2251) were obtained from lineweaver-Burk plots. Jerdofibrase could hydrolyze all three substrates, but jerdonobin had no detectable activity on S2251, suggesting a relatively broader substrate specificity for jerdofibrase than jerdonobin. By SDS-PAGE, jerdofibrase preferentially degraded Bbeta-chain of fibrinogen. It also degraded Aalpha-chain of fibrinogen with relatively slow activity, but did not act on the gamma-chain. In contrast, jerdonobin did not degrade fibrinogen within 12 h. Fibrinopeptides liberation test, identified by HPLC, showed jerdonobin released fibrinopeptide A and a small amount of fibrinopeptide B. Unlike jerdonobin, jerdofibrase mainly released fibrinopeptide B. These results indicate that the two enzymes differ in their ability to hydrolyze chromogenic substrates and in their actions on fibrinogen. (C) 2002 Elsevier Science Inc. All rights reserved.