731 resultados para STEEL DECK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

View of pool and deck with Iwan (left) and filter room (right).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As seen from living room interior, looking through to deck and kitchen beyond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corner of kitchen opens to deck via a series of folding windows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

View through doors to upper level viewing deck.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

View from kitchen to entrance deck and gully beyond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

View of entrance deck.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

View past kitchen windows and roof overhang to entrance deck to the south-west.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

View along circulation deck to belvedere (deck) beyond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

View to south-east corner, clad in corrugated steel sheeting with colonnade below.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress corrosion cracking (SCC) initiation process for 4340 high strength steel in distilled water at room temperature was studied using a new kind of instrument: an environmental scanning electron microscope (ESEM). It was found that the applied stress accelerated oxide film formation which has an important influence on the subsequent SCC initiation. SCC was observed to initiate in the following circumstances: (1) cracking of a thick oxide film leading to SCC initiation along metal grain boundaries, (2) the initiation of pits initiating SCC in the metal and (3) SCC initiating from the edge of the specimen. All these three SCC initiation circumstances are consistent with the following model which couples SCC initiation with cracking of a surface protective oxide. There is a dynamic interaction between oxide formation, the applied stress, oxide cracking, pitting and the initiation of SCC. An aspect of the dynamic interaction is cracks forming in a protective surface oxide because of the applied stress, exposing to the water bare metal at the oxide crack tip, and oxidation of the bare metal causing crack healing. Oxide crack healing would be competing with the initiation of intergranular SCC if an oxide crack meets the metal surface at a grain boundary. If the intergranular SCC penetration is sufficiently fast along the metal grain boundary, then the crack yaws open preventing healing of the oxide crack. If intergranular SCC penetration is not sufficiently fast, then the oxidation process could produce sufficient oxide to fill both the stress corrosion crack and the oxide crack; in this case there would be initiation of SCC but only limited propagation of SCC. Stress-induced cracks in very thin oxide can induce pits which initiate SCC, and under some conditions such stress induced cracks in a thin oxide can directly initiate SCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the application of linearly increasing stress testing (LIST) to the study of stress corrosion cracking (SCC) of carbon steel in 4 N NaNO3 and in Bayer liquor. LIST is similar to the constant extension-rate testing (CERT) methodology with the essential difference that the LIST is load controlled whereas the CERT is displacement controlled. The main conclusion is that LIST is suitable for the study of the SCC of carbon steels in 4 N NaNO3 and in Bayer liquor. The low crack velocity in Bayer liquor and a measured maximum stress close to that of the reference specimen in air both indicate that a low applied stress rate is required to study SCC in this system. (C) 1998 Chapman & Hall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical electron microscopy was used to measure the composition of grain boundaries (GBs) and interconstituent boundaries (IBs) of X52 pipeline steel using specimens about 40-60 nm in thickness. All elements of interest were examined with the exception of carbon. With this caveat; there was no segregation at proeutectoid ferrite GBs. This indicated that the commonly expected species S and P are not responsible for preferential corrosion of GBs during intergranular stress corrosion cracking of pipeline steels. Manganese was the only species measured to segregate at the IBs. Manganese segregated to the IBs between proeutectoid ferrite and pearlitic cementite, and desegregated from IBs between proeutectoid ferrite and pearlitic ferrite. The pearlitic cementite was Mn rich. There was no Mn segregation at the IBs between pearlitic ferrite and pearlitic cementite. The pattern of Mn segregation could be explained in terms of diffusion in the process zone ahead of the pearlite during the austenite to pearlite transformation and diffusion in the IBs between the proeutectoid ferrite and pearlite. (C) 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An examination has been carried out of the secondary passive film on Type 304 stainless steel in 0.5 M H2SO4. The characterization techniques used were electrochemical (potentiodynamic; potentiostatic, and film reduction experiments) and surface analytical. A bilayer model for the secondary passive film is proposed. It appears that next to the metal, there is a modified passive film which controls the electrochemical response; i.e., governs the current for any applied potential. On top of this modified passive film, the experimental data are consistent with a ''porous'' corrosion-product film which adds to the total film thickness but has little influence on the electrochemical response. The composition of the secondary passive film corresponds most probably to a mixed Fe/Cr oxide/hydroxide enriched in Cr3+, With a composition similar to a primary passive film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on measurements of crack growth by environmental assisted fracture (EAF) for 4340 steel in water and in air at various relative humidities. Of most interest is the observation of slow crack propagation in dry air. Fractographic analysis leads to the strong suggestion that this slow crack propagation is due to hydrogen cracking caused by internal hydrogen in solid solution inside the sample material.

Relevância:

20.00% 20.00%

Publicador: