998 resultados para STAR MASS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that the significantly different effective temperatures (T(eff)) achieved by the luminous blue variable AG Carinae during the consecutive visual minima of 1985-1990 (T(eff) similar or equal to 22,800 K) and 2000-2001 (T(eff) similar or equal to 17,000 K) place the star on different sides of the bistability limit, which occurs in line-driven stellar winds around T(eff) similar to 21,000 K. Decisive evidence is provided by huge changes in the optical depth of the Lyman continuum in the inner wind as T(eff) changes during the S Dor cycle. These changes cause different Fe ionization structures in the inner wind. The bistability mechanism is also related to the different wind parameters during visual minima: the wind terminal velocity was 2-3 times higher and the mass-loss rate roughly two times smaller in 1985-1990 than in 2000-2003. We obtain a projected rotational velocity of 220 +/- 50 km s(-1) during 1985-1990 which, combined with the high luminosity (L(star) = 1.5 x 10(6) L(circle dot)), puts AG Car extremely close to the Eddington limit modified by rotation (Omega Gamma limit): for an inclination angle of 90 degrees, Gamma(Omega) greater than or similar to 1.0 for M(circle dot) less than or similar to 60. Based on evolutionary models and mass budget, we obtain an initial mass of similar to 100 M(circle dot) and a current mass of similar to 60-70 M(circle dot) for AG Car. Therefore, AG Car is close to, if not at, the Omega Gamma limit during visual minimum. Assuming M = 70 M(circle dot), we find that Gamma(Omega) decreases from 0.93 to 0.72 as AG Car expands toward visual maximum, suggesting that the star is not above the Eddington limit during maximum phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have obtained the mass-metallicity (M-Z) relation at different lookback times for the same set of galaxies from the Sloan Digital Sky Survey, using the stellar metallicities estimated with our spectral synthesis code STARLIGHT. We have found that this relation steepens and spans a wider range in both mass and metallicity at higher redshifts. We have modelled the time evolution of stellar metallicity with a closed-box chemical evolution model, for galaxies of different types and masses. Our results suggest that the M-Z relation for galaxies with present-day stellar masses down to 10(10) M(circle dot) is mainly driven by the history of star formation and not by inflows or outflows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the multiplicity and pseudorapidity distributions of photons produced in Au + Au and Cu + Cu collisions at root(s)NN = 62.4 and 200 GeV. The photons are measured in the region -3.7 < eta < -2.3 using the photon Multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of (lie collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for An + Au and Cu + Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for root(s)NN = 62.4 and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of eta-Y(beam), are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present the J/psi measurement in p+p collisions within the STAR collaboration Quarkonium program. This measurements aim to be the baseline measurement of a more comprehensive systematic study of quarkonium states production in order to understand their in medium modification. Here we report the total cross section and rho(T) distribution, and find them to be consistent with pQCD CEM predictions as well as to previous measurements at the same center-of-mass energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the equation of state for neutron matter using the Walecka model including quantum corrections for baryons and sigma mesons through a realignment of the vacuum. We next use this equation of state to calculate the radius, mass and other properties of rotating neutron star.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We ascribe the 15-60 Hz Quasi Periodic Oscillation (QPO) to the periastron precession frequency of the orbiting accreted matter at the boundary of magnetosphere-disk of Xray neutron star (NS). Considering the relativistic motion mechanism for the kHz QPO, that the radii of the inner disk and magnetosphere-disk of NS are correlated with each other by a factor is assumed. The obtained conclusions include: all QPO frequencies increase with increasing the accretion rate. The theoretical relations between 15-60 Hz QPO (HBO) frequency and the twin kHz QPOs are similar to the measured empirical formula. Further, the better fitted NS mass by the proposed model is about 1.9 solar masses for the detected LMXBs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The possibility of strange stars is one of the most important issues in the study of compact objects. Here we use the observations of the newly discovered millisecond x-ray pulsar SAX J1808.4-3658 to constrain the radius of the compact star. Comparing the mass-radius relation of SAX J1808.4-3658 with theoretical models for both neutron stars and strange stars, we argue that a strange star model could be more consistent with SAX J1808.4-3658, and suggest that it is a likely strange star candidate. Our results are useful in constraining microscopic chiral symmetry restoration parameters in the quantum chromodynamics (QCD) modeling of strange matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear medium effects in the neutrino cooling of neutron stars through the reaction channel γγ→π0 →ν Rν̄L(νLν̄R) are incorporated. Throughout the paper we discuss different possibilities of right-handed neutrinos, massive left-handed neutrinos, and standard massless left-handed neutrinos (reaction is then allowed only with medium modified vertices). It is demonstrated that multiparticle effects suppress the rate of this reaction channel in the dense hadron matter by 6-7 orders of magnitude that does not allow to decrease existing experimental upper limit on the corresponding π0νν̄ coupling. Other possibilities of the manifestation of the given reaction channel in different physical situations, e.g., in the quark color superconducting cores of the most massive neutron stars, are also discussed. We demonstrate that in the color-flavor-locked superconducting phase for temperatures T≲ 0.1-10 MeV (depending on the effective pion mass and the decay width) the process is feasibly the most efficient neutrino cooling process, although the absolute value of the reaction rate is rather small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a photometric catalogue of compact groups of galaxies (p2MCGs) automatically extracted from the Two-Micron All Sky Survey (2MASS) extended source catalogue. A total of 262 p2MCGs are identified, following the criteria defined by Hickson, of which 230 survive visual inspection (given occasional galaxy fragmentation and blends in the 2MASS parent catalogue). Only one quarter of these 230 groups were previously known compact groups (CGs). Among the 144 p2MCGs that have all their galaxies with known redshifts, 85 (59?per cent) have four or more accordant galaxies. This v2MCG sample of velocity-filtered p2MCGs constitutes the largest sample of CGs (with N = 4) catalogued to date, with both well-defined selection criteria and velocity filtering, and is the first CG sample selected by stellar mass. It is fairly complete up to Kgroup similar to 9 and radial velocity of similar to 6000?km?s-1. We compared the properties of the 78 v2MCGs with median velocities greater than 3000?km?s-1 with the properties of other CG samples, as well as those (mvCGs) extracted from the semi-analytical model (SAM) of Guo et al. run on the high-resolution Millennium-II simulation. This mvCG sample is similar (i.e. with 2/3 of physically dense CGs) to those we had previously extracted on three other SAMs run on the Millennium simulation with 125 times worse spatial and mass resolutions. The space density of v2MCGs within 6000?km?s-1 is 8.0 X 10-5?h3?Mpc-3, i.e. four times that of the Hickson sample [Hickson Compact Group (HCG)] up to the same distance and with the same criteria used in this work, but still 40?per cent less than that of mvCGs. The v2MCG constitutes the first group catalogue to show a statistically large firstsecond ranked galaxy magnitude gap according to TremaineRichstone statistics, as expected if the first ranked group members tend to be the products of galaxy mergers, and as confirmed in the mvCGs. The v2MCG is also the first observed sample to show that first-ranked galaxies tend to be centrally located, again consistent with the predictions obtained from mvCGs. We found no significant correlation of group apparent elongation and velocity dispersion in the quartets among the v2MCGs, and the velocity dispersions of apparently round quartets are not significantly larger than those of chain-like ones, in contrast to what has been previously reported in HCGs. By virtue of its automatic selection with the popular Hickson criteria, its size, its selection on stellar mass, and its statistical signs of mergers and centrally located brightest galaxies, the v2MCG catalogue appears to be the laboratory of choice to study physically dense groups of four or more galaxies of comparable luminosity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vector mesons may be photoproduced in relativistic heavy-ion collisions when a virtual photon emitted by one nucleus scatters from the other nucleus, emerging as a vector meson. The STAR Collaboration has previously presented measurements of coherent rho(0) photoproduction at center of mass energies of 130 GeV and 200 GeV in AuAu collisions. Here, we present a measurement of the cross section at 62.4 GeV; we find that the cross section for coherent rho(0) photoproduction with nuclear breakup is 10.5 +/- 1.5 +/- 1.6mb at 62.4 GeV. The cross-section ratio between 200 GeV and 62.4 GeV is 4.4 +/- 0.6, less than is predicted by most theoretical models. It is, however, proportionally much larger than the previously observed 15% +/- 55% increase between 130 GeV and 200 GeV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. These measurements indicate that planets of similar mass can have very different radii. For low-density planets, it is generally assumed that they are inflated owing to their proximity to the host-star. To determine the causes of this inflation, it is necessary to obtain a statistically significant sample of planets with precisely measured masses and radii. Aims. The CoRoT space mission allows us to achieve a very high photometric accuracy. By combining CoRoT data with high-precision radial velocity measurements, we derive precise planetary radii and masses. We report the discovery of CoRoT-19b, a gas-giant planet transiting an old, inactive F9V-type star with a period of four days. Methods. After excluding alternative physical configurations mimicking a planetary transit signal, we determine the radius and mass of the planet by combining CoRoT photometry with high-resolution spectroscopy obtained with the echelle spectrographs SOPHIE, HARPS, FIES, and SANDIFORD. To improve the precision of its ephemeris and the epoch, we observed additional transits with the TRAPPIST and Euler telescopes. Using HARPS spectra obtained during the transit, we then determine the projected angle between the spin of the star and the orbit of the planet. Results. We find that the host star of CoRoT-19b is an inactive F9V-type star close to the end of its main-sequence life. The host star has a mass M-* = 1.21 +/- 0.05 M-circle dot and radius R-* = 1.65 +/- 0.04 R-circle dot. The planet has a mass of M-P = 1.11 +/- 0.06 M-Jup and radius of R-P = 1.29 +/- 0.03 R-Jup. The resulting bulk density is only rho = 0.71 +/- 0.06 g cm (3), which is much lower than that for Jupiter. Conclusions. The exoplanet CoRoT-19b is an example of a giant planet of almost the same mass as Jupiter but a approximate to 30% larger radius.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 +/- 0.0002 days with slight eccentricity. A fit of the data with no a priori assumptions on the orbit leads to an eccentricity of 0.33 +/- 0.1. We discuss this value and also derive the mass and radius of the planet. Methods. We analyse the photometric transit curve of CoRoT-16 given by the CoRoT satellite, and radial velocity data from the HARPS and HIRES spectrometers. A combined analysis using a Markov chain Monte Carlo algorithm is used to get the system parameters. Results. CoRoT-16b is a 0.535 -0.083/+0.085 M-J, 1.17 -0.14/+0.16 R-J hot Jupiter with a density of 0.44 -0.14/+0.21 g cm(-3). Despite its short orbital distance (0.0618 +/- 0.0015 AU) and the age of the parent star (6.73 +/- 2.8 Gyr), the planet orbit exhibits significantly non-zero eccentricity. This is very uncommon for this type of objects as tidal effects tend to circularise the orbit. This value is discussed taking into account the characteristics of the star and the observation accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We employ optical and near-infrared photometry to study the stars in the direction of the star cluster candidate Kronberger 49. The optical color-magnitude diagrams (V, I, and Gunn z photometry obtained with the Galileo Telescope) are tight and present evidence of a main-sequence turnoff. We may be dealing with a low-mass, metal-rich globular cluster located in the bulge at a distance from the Sun of d(circle dot) = 8 +/- 1 kpc. Alternatively, it may be a dust hole through which we are sampling the bulge stellar population affected by a very low amount of differential reddening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existence of millisecond pulsars with planet-mass companions in close orbits is challenging from the stellar evolution point of view. We calculate in detail the evolution of binary systems self-consistently, including mass transfer, evaporation, and irradiation of the donor by X-ray feedback, demonstrating the existence of a new evolutionary path leading to short periods and compact donors as required by the observations of PSR J1719-1438. We also point out the alternative of an exotic nature of the companion planet-mass star.