957 resultados para SPORTS PERFORMANCE
Resumo:
This article reviews the literature regarding gastrointestinal disturbances in particular in runners. The lower intestinal problems of motility and blood loss are discussed. These problems are directly related to running. These symptoms, especially diarrhea are common and can impact adversely both performance and the health of the athlete. Most cases are relatively benign. The sport medicine clinician should be familiar with the management of these problems in order to optimize the treatment and facilitate return to sport.
Resumo:
In a biophysical approach to the study of swimming performance (blending biomechanics and bioenergetics), inter-limb coordination is typically considered and analysed to improve propulsion and propelling efficiency. In this approach, 'opposition' or 'continuous' patterns of inter-limb coordination, where continuity between propulsive actions occurs, are promoted in the acquisition of expertise. Indeed a 'continuous' pattern theoretically minimizes intra-cyclic speed variations of the centre of mass. Consequently, it may also minimize the energy cost of locomotion. However, in skilled swimming performance there is a need to strike a delicate balance between inter-limb coordination pattern stability and variability, suggesting the absence of an 'ideal' pattern of coordination toward which all swimmers must converge or seek to imitate. Instead, an ecological dynamics framework advocates that there is an intertwined relationship between the specific intentions, perceptions and actions of individual swimmers, which constrains this relationship between coordination pattern stability and variability. This perspective explains how behaviours emerge from a set of interacting constraints, which each swimmer has to satisfy in order to achieve specific task performance goals and produce particular task outcomes. This overview updates understanding on inter-limb coordination in swimming to analyse the relationship between coordination variability and stability in relation to interacting constraints (related to task, environment and organism) that swimmers may encounter during training and performance.
Resumo:
Over the past two decades, intermittent hypoxic training (IHT), that is, a method where athletes live at or near sea level but train under hypoxic conditions, has gained unprecedented popularity. By adding the stress of hypoxia during 'aerobic' or 'anaerobic' interval training, it is believed that IHT would potentiate greater performance improvements compared to similar training at sea level. A thorough analysis of studies including IHT, however, leads to strikingly poor benefits for sea-level performance improvement, compared to the same training method performed in normoxia. Despite the positive molecular adaptations observed after various IHT modalities, the characteristics of optimal training stimulus in hypoxia are still unclear and their functional translation in terms of whole-body performance enhancement is minimal. To overcome some of the inherent limitations of IHT (lower training stimulus due to hypoxia), recent studies have successfully investigated a new training method based on the repetition of short (<30 s) 'all-out' sprints with incomplete recoveries in hypoxia, the so-called repeated sprint training in hypoxia (RSH). The aims of the present review are therefore threefold: first, to summarise the main mechanisms for interval training and repeated sprint training in normoxia. Second, to critically analyse the results of the studies involving high-intensity exercises performed in hypoxia for sea-level performance enhancement by differentiating IHT and RSH. Third, to discuss the potential mechanisms underpinning the effectiveness of those methods, and their inherent limitations, along with the new research avenues surrounding this topic.
Resumo:
Despite the limited research on the effects of altitude (or hypoxic) training interventions on team-sport performance, players from all around the world engaged in these sports are now using altitude training more than ever before. In March 2013, an Altitude Training and Team Sports conference was held in Doha, Qatar, to establish a forum of research and practical insights into this rapidly growing field. A round-table meeting in which the panellists engaged in focused discussions concluded this conference. This has resulted in the present position statement, designed to highlight some key issues raised during the debates and to integrate the ideas into a shared conceptual framework. The present signposting document has been developed for use by support teams (coaches, performance scientists, physicians, strength and conditioning staff) and other professionals who have an interest in the practical application of altitude training for team sports. After more than four decades of research, there is still no consensus on the optimal strategies to elicit the best results from altitude training in a team-sport population. However, there are some recommended strategies discussed in this position statement to adopt for improving the acclimatisation process when training/competing at altitude and for potentially enhancing sea-level performance. It is our hope that this information will be intriguing, balanced and, more importantly, stimulating to the point that it promotes constructive discussion and serves as a guide for future research aimed at advancing the bourgeoning body of knowledge in the area of altitude training for team sports.
Resumo:
Anabolic androgenic steroids (AAS) are doping agents that are mostly used for improvement of strength and muscle hypertrophy. In some sports, athletes reported that the intake of AAS is associated with a better recovery, a higher training load capacity and therefore an increase in physical and mental performances. The purpose of this study was to evaluate, the effect of multiple doses of AAS on different physiological parameters that could indirectly relate the physical state of athletes during a hard endurance training program. In a double blind settings, three groups (n = 9, 8 and 8) were orally administered placebo, testosterone undecanoate or 19-norandrostenedione, 12 times during 1 month. Serum biomarkers (creatine kinase, ASAT and urea), serum hormone profiles (testosterone, cortisol and LH) and urinary catecholamines (noradrenalin, adrenalin and dopamine) were evaluated during the treatment. Running performance was assessed before and after the intervention phase by means of a standardized treadmill test. None of the measured biochemical variables showed significant impact of AAS on physical stress level. Data from exercise testing on submaximal and maximal level did not reveal any performance differences between the three groups or their response to the treatment. In the present study, no effect of multiple oral doses of AAS on endurance performance or bioserum recovery markers was found.
Resumo:
According to the annual report of the World Anti-Doping Agency, steroids are the most frequently detected class of doping agents. Detecting the misuse of endogenously occurring steroids, i.e. steroids such as testosterone that are produced naturally by humans, is one of the most challenging issues in doping control analysis. The established thresholds for urinary concentrations or concentration ratios such as the testosterone/epitestosterone quotient are sometimes inconclusive owing to the large biological variation in these parameters.For more than 15 years, doping control laboratories focused on the carbon isotope ratios of endogenous steroids to distinguish between naturally elevated steroid profile parameters and illicit administration of steroids. A variety of different methods has been developed throughout the last decade and the number of different steroids under investigation by isotope ratio mass spectrometry has recently grown considerably. Besides norandrosterone, boldenone was found to occur endogenously in rare cases and the misuse of corticosteroids or epitestosterone can now be detected with the aid of carbon isotope ratios as well. In addition, steroids excreted as sulfoconjugates were investigated, and the first results regarding hydrogen isotope ratios recently became available.All of these will be presented in detail within this review together with some considerations on validation issues and on identification of parameters influencing steroidal isotope ratios in urine.
Resumo:
The aim of this study was to determine potential relationships between anthropometric parameters and athletic performance with special consideration to repeated-sprint ability (RSA). Sixteen players of the senior male Qatar national soccer team performed a series of anthropometric and physical tests including countermovement jumps without (CMJ) and with free arms (CMJwA), straight-line 20 m sprint, RSA (6 × 35 m with 10 s recovery) and incremental field test. Significant (P < 0.05) relationships occurred between muscle-to-bone ratio and both CMJs height (r ranging from 0.56 to 0.69) as well as with all RSA-related variables (r < -0.53 for sprinting times and r = 0.54 for maximal sprinting speed) with the exception of the sprint decrement score (Sdec). The sum of six skinfolds and adipose mass index were largely correlated with Sdec (r = 0.68, P < 0.01 and r = 0.55, P < 0.05, respectively) but not with total time (TT, r = 0.44 and 0.33, P > 0.05, respectively) or any standard athletic tests. Multiple regression analyses indicated that muscular cross-sectional area for mid-thigh, adipose index, straight-line 20 m time, maximal sprinting speed and CMJwA are the strongest predictors of Sdec (r(2) = 0.89) and TT (r(2) = 0.95) during our RSA test. In the Qatar national soccer team, players' power-related qualities and RSA are associated with a high muscular profile and a low adiposity. This supports the relevance of explosive power for the soccer players and the larger importance of neuromuscular qualities determining the RSA.
Resumo:
BACKGROUND/AIM: With the evolving boundaries of sports science and greater understanding of the driving factors in the human performance physiology, one of the limiting factors has now become the technology. The growing scientific interest on the practical application of hypoxic training for intermittent activities such as team and racket sports legitimises the development of innovative technologies serving athletes in a sport-specific setting. METHODS: Description of a new mobile inflatable simulated hypoxic equipment. RESULTS: The system comprises two inflatable units-that is, a tunnel and a rectangular design, each with a 215 m(3) volume and a hypoxic trailer generating over 3000 Lpm of hypoxic air with FiO₂ between 0.21 and 0.10 (a simulated altitude up to 5100 m). The inflatable units offer a 45 m running lane (width=1.8 m and height=2.5 m) as well as a 8 m × 10 m dome tent. FiO₂ is stable within a range of 0.1% in normal conditions inside the tunnel. The air supplied is very dry-typically 10-15% relative humidity. CONCLUSIONS: This mobile inflatable simulated hypoxic equipment is a promising technological advance within sport sciences. It offers an opportunity for team-sport players to train under hypoxic conditions, both for repeating sprints (tunnel configuration) or small-side games (rectangular configuration).
Resumo:
AIM: This study evaluates the effect of front suspension (FS) and dual suspension (DS) mountain-bike on performance and vibrations during off-road uphill riding. METHODS: Thirteen male cyclists (27+/-5 years, 70+/-6 kg, VO(2max)59+/-6 mL.kg(-1).min(-1), mean+/-SD) performed, in a random sequence, at their lactate threshold, an off-road uphill course (1.69 km, 212 m elevation gain) with both type of bicycles. Variable measured: a) VO(2) consumption (K4b2 analyzer, Cosmed), b) power output (SRM) c) gain in altitude and d) 3-D accelerations under the saddle and at the wheel (Physilog, EPFL, Switzerland). Power spectral analy- sis (Fourier) was performed from the vertical acceleration data. RESULTS: Respectively for the FS and DS mountain bike: speed amounted to 7.5+/-0.7 km.h(-1) and 7.4+/-0.8 km.h(-1), (NS), energy expenditure 1.39+/-0.16 kW and 1.38+/-0.18, (NS), gross efficiency 0.161+/-0.013 and 0.159+/-0.013, (NS), peak frequency of vibration under the saddle 4.78+/-2.85 Hz and 2.27+/-0.2 Hz (P<0.01) and median-frequency of vertical displacements of the saddle 9.41+/-1.47 Hz and 5.78+/-2.27 Hz (P<0.01). CONCLUSION: Vibrations at the saddle level of the DS bike are of low frequencies whereas those of the FS bike are mostly of high frequencies. In the DS bike, the torque produced by the cyclist at the pedal level may generate low frequency vibrations. We conclude that the DS bike absorbs more high frequency vibrations, is more comfortable and performs as well as the FS bicycle.
Resumo:
PURPOSE: This study investigates physical performance limitations for sports and daily activities in recently diagnosed childhood cancer survivors and siblings. METHODS: The Swiss Childhood Cancer Survivor Study sent a questionnaire to all survivors (≥ 16 years) registered in the Swiss Childhood Cancer Registry, who survived >5 years and were diagnosed 1976-2003 aged <16 years. Siblings received similar questionnaires. We assessed two types of physical performance limitations: 1) limitations in sports; 2) limitations in daily activities (using SF-36 physical function score). We compared results between survivors diagnosed before and after 1990 and determined predictors for both types of limitations by multivariable logistic regression. RESULTS: The sample included 1038 survivors and 534 siblings. Overall, 96 survivors (9.5%) and 7 siblings (1.1%) reported a limitation in sports (Odds ratio 5.5, 95%CI 2.9-10.4, p<0.001), mainly caused by musculoskeletal and neurological problems. Findings were even more pronounced for children diagnosed more recently (OR 4.8, CI 2.4-9.6 and 8.3, CI 3.7-18.8 for those diagnosed <1990 and ≥ 1990, respectively; p=0.025). Mean physical function score for limitations in daily activities was 49.6 (CI 48.9-50.4) in survivors and 53.1 (CI 52.5-53.7) in siblings (p<0.001). Again, differences tended to be larger in children diagnosed more recently. Survivors of bone tumors, CNS tumors and retinoblastoma and children treated with radiotherapy were most strongly affected. CONCLUSION: Survivors of childhood cancer, even those diagnosed recently and treated with modern protocols, remain at high risk for physical performance limitations. Treatment and follow-up care should include tailored interventions to mitigate these late effects in high-risk patients.
Resumo:
PURPOSE: To use measurement by cycling power meters (Pmes) to evaluate the accuracy of commonly used models for estimating uphill cycling power (Pest). Experiments were designed to explore the influence of wind speed and steepness of climb on accuracy of Pest. The authors hypothesized that the random error in Pest would be largely influenced by the windy conditions, the bias would be diminished in steeper climbs, and windy conditions would induce larger bias in Pest. METHODS: Sixteen well-trained cyclists performed 15 uphill-cycling trials (range: length 1.3-6.3 km, slope 4.4-10.7%) in a random order. Trials included different riding position in a group (lead or follow) and different wind speeds. Pmes was quantified using a power meter, and Pest was calculated with a methodology used by journalists reporting on the Tour de France. RESULTS: Overall, the difference between Pmes and Pest was -0.95% (95%CI: -10.4%, +8.5%) for all trials and 0.24% (-6.1%, +6.6%) in conditions without wind (<2 m/s). The relationship between percent slope and the error between Pest and Pmes were considered trivial. CONCLUSIONS: Aerodynamic drag (affected by wind velocity and orientation, frontal area, drafting, and speed) is the most confounding factor. The mean estimated values are close to the power-output values measured by power meters, but the random error is between ±6% and ±10%. Moreover, at the power outputs (>400 W) produced by professional riders, this error is likely to be higher. This observation calls into question the validity of releasing individual values without reporting the range of random errors.
Resumo:
New methods and devices for pursuing performance enhancement through altitude training were developed in Scandinavia and the USA in the early 1990s. At present, several forms of hypoxic training and/or altitude exposure exist: traditional 'live high-train high' (LHTH), contemporary 'live high-train low' (LHTL), intermittent hypoxic exposure during rest (IHE) and intermittent hypoxic exposure during continuous session (IHT). Although substantial differences exist between these methods of hypoxic training and/or exposure, all have the same goal: to induce an improvement in athletic performance at sea level. They are also used for preparation for competition at altitude and/or for the acclimatization of mountaineers. The underlying mechanisms behind the effects of hypoxic training are widely debated. Although the popular view is that altitude training may lead to an increase in haematological capacity, this may not be the main, or the only, factor involved in the improvement of performance. Other central (such as ventilatory, haemodynamic or neural adaptation) or peripheral (such as muscle buffering capacity or economy) factors play an important role. LHTL was shown to be an efficient method. The optimal altitude for living high has been defined as being 2200-2500 m to provide an optimal erythropoietic effect and up to 3100 m for non-haematological parameters. The optimal duration at altitude appears to be 4 weeks for inducing accelerated erythropoiesis whereas <3 weeks (i.e. 18 days) are long enough for beneficial changes in economy, muscle buffering capacity, the hypoxic ventilatory response or Na(+)/K(+)-ATPase activity. One critical point is the daily dose of altitude. A natural altitude of 2500 m for 20-22 h/day (in fact, travelling down to the valley only for training) appears sufficient to increase erythropoiesis and improve sea-level performance. 'Longer is better' as regards haematological changes since additional benefits have been shown as hypoxic exposure increases beyond 16 h/day. The minimum daily dose for stimulating erythropoiesis seems to be 12 h/day. For non-haematological changes, the implementation of a much shorter duration of exposure seems possible. Athletes could take advantage of IHT, which seems more beneficial than IHE in performance enhancement. The intensity of hypoxic exercise might play a role on adaptations at the molecular level in skeletal muscle tissue. There is clear evidence that intense exercise at high altitude stimulates to a greater extent muscle adaptations for both aerobic and anaerobic exercises and limits the decrease in power. So although IHT induces no increase in VO(2max) due to the low 'altitude dose', improvement in athletic performance is likely to happen with high-intensity exercise (i.e. above the ventilatory threshold) due to an increase in mitochondrial efficiency and pH/lactate regulation. We propose a new combination of hypoxic method (which we suggest naming Living High-Training Low and High, interspersed; LHTLHi) combining LHTL (five nights at 3000 m and two nights at sea level) with training at sea level except for a few (2.3 per week) IHT sessions of supra-threshold training. This review also provides a rationale on how to combine the different hypoxic methods and suggests advances in both their implementation and their periodization during the yearly training programme of athletes competing in endurance, glycolytic or intermittent sports.
Resumo:
Blood transfusion is an effective and unmediated means of increasing the number of red blood cells in the circulation in order to enhance athletic performance. Blood transfusion became popular in the 1970s among elite endurance athletes and declined at the end of the 1980s with the introduction of recombinant erythropoietin. The successive implementation in 2001 of a direct test to detect exogenous erythropoietin and in 2004 of a test to detect allogeneic blood transfusion forced cheating athletes to reinfuse fully immunologically compatible blood. The implementation of indirect markers of blood doping stored in an Athlete's Biological Passport provides a powerful means to deter any form of blood transfusion.
Resumo:
Introduction Our institution (University hospital) is encouraging physical activities for health through various popular sporting events in the city of Lausanne, the biggest of which is a road race of 2, 4, 10 and 20km. Objective To create an efficient and sustainable training program in preparation of the race for a group of motivated hospital employees without any prior experience with structured training and to identifying the benefits and limitations encountered.. Methods Subjects of various fitness levels were recruited by add and agreed to undergo lab and field testing before a 12-week 3 times/week running program, based on maximal aerobic speed (MAS-30/30 sec intervals), running technique exercises and endurance training. The interval session was the only one supervised. Their goal was the 10km (11 subjects) and the 20km (6 subjects). Results A group of 17 subjects (7 male and 10 female), mean age 36.6±7.3 years, VO2max 44.0±5.5 ml/kg/min, filed test interval MAS 15.1±2.4 km/h started the program. 2 were lost because of injury (while skiing). Adherence to interval sessions was excellent, although 3 weekly training sessions proved to be difficult for most of the subjects. Performance in the race was satisfying for all of them, 6/7 subjects having improved their running time from the previous year, the others participated for the first time and 7/8 completed the race satisfyingly, one DNF-ed because of sinusitis. Repeat MAS field test was available for 6 subjects, who improved by 5.9% (p<0.01). Subjectively, all of the participants were very satisfied with improvement, interaction with colleagues from various professions, and with self achievement and confidence. Conclusions Implementation of a structured training program for recreational or non-athletes can be very successful in creating a better self-confidence, a better working environment inside a hospital facility and obviously in improvement of physical fitness and athletic performance. Above all, it can only encourage health institutions to promote the health of their own employees through physical activity, which can allow people to connect through sports. As a result, subjects in this study tend to encourage other employees to be more active and are hungry for more advice and continued offers for physical activities benefiting both them and the institution through better efficiency at work and less absenteeism common to more active people.
Resumo:
Training and competition in major track-and-field events, and for many team or racquet sports, often require the completion of maximal sprints in hot (>30 °C) ambient conditions. Enhanced short-term (<30 s) power output or single-sprint performance, resulting from transient heat exposure (muscle temperature rise), can be attributed to improved muscle contractility. Under heat stress, elevations in skin/core temperatures are associated with increased cardiovascular and metabolic loads in addition to decreasing voluntary muscle activation; there is also compelling evidence to suggest that large performance decrements occur when repeated-sprint exercise (consisting of brief recovery periods between sprints, usually <60 s) is performed in hot compared with cool conditions. Conversely, poorer intermittent-sprint performance (recovery periods long enough to allow near complete recovery, usually 60-300 s) in hotter conditions is solely observed when exercise induces marked hyperthermia (core temperature >39 °C). Here we also discuss strategies (heat acclimatization, precooling, hydration strategies) employed by "sprint" athletes to mitigate the negative influence of higher environmental temperatures.