923 resultados para SPONTANEOUS ONSET
Resumo:
Human papillomaviruses (HPVs) are the causal agents of cervical cancer, which is the second most common cancer among women worldwide. Cellular transformation and carcinogenesis depend on the activities of viral E5, E6 and E7 proteins. Alterations in cell-cell contacts and in communication between epithelial cells take place during cervical carcinogenesis, leading to changes in cell morphology, increased cell motility and finally invasion. The aim of this thesis was to study genome-wide effects of the HPV type 16 (HPV-16) E5 protein on the expression of host cell messenger RNAs (mRNAs) and microRNAs by applying microarray technology. The results showed that the HPV-16 E5 protein alters several cellular pathways involved in cellular adhesion, motility and proliferation as well as in the extracellular matrix. The E5 protein was observed to enhance wound healing of epithelial cell monolayers by increasing cell motility in vivo. HPV-16 E5-induced alterations in the expression of cellular microRNAs and their target genes seem to favour increased proliferation and tumorigenesis. E5 was also shown to affect the expression of adherens junction proteins in HaCaT epithelial keratinocytes. In addition, a study of a membrane cytoskeletal cross-linker protein, ezrin, revealed that when activated, it localizes to adherens junctions. The results suggest that ezrin distribution to forming adherens junctions is due to Rac1 activity in epithelial cells. These studies reveal for the first time the holistic effects of HPV-16 E5 protein in promoting precancerous events in epithelial cells. The results contribute to identifyinging novel markers for cervical precancerous stages and to predicting disease behaviour.
Resumo:
When freshly eclosed females of the primitively eusocial wasp, Rapalidia marginata are isolated into individual cages, only about half of them build nests and lay eggs and those that do so take a long and variable amount of time (Mean +/- SD = 66 +/- 37 days) before they lay their first egg. Part of the reason for this delay is because, when kept in isolation, no wasp begins to lay eggs during a period of approximately 82 days from mid - October to early January. Wasps maintained at a constant temperature of 26 +/- 1-degrees-C however initiate egg laying throughout the year, suggesting that the low temperatures during mid - October to early January may be at least one factor that makes this period unfavourable for wasps maintained at room temperature. Egg laying continues more or less normally throughout October-January however, in all natural and laboratory colonies studied. Natural colonies of R. marginata are initiated throughout the year and often by groups of females. Huddling together is a striking feature of the wasps especially on cold mornings. We therefore suggest that the isolated animals in our experiment are unable to lay eggs during the coldest part of the year because of their inability to huddle together, share metabolic heat and perform "co-operative thermoregulation". Such "co-operative thermoregulation" may thus be another factor that facilitates the evolution of socialitly.
Magnetic properties of pure, Sr- and Ca-Doped La2NiO4+δ ceramics: Onset of high-Tc superconductivity
Resumo:
We present the results for the temperature and field dependence of the magnetic for ceramic materials of the composition La2−xMxNiO4, with M=Sr or Ca and 0≤x≤0.4. The onset of a strong diamagnetism has been observed at temperatures between 8 and 70 K, depending on sample composition, annealing conditions. and thermal cycling procedures. The results are similar to those obtained earlier for monocrystalline samples and are likewise interpreted as due to the onset of superconductivity in a minority phase. A comparison with the results for superconducting La1.8Sr0.2Cu0.9Ni0.1O4 ceramics is also made; this illustrates some unique features of the nickelate systems, such as the high values of the critical fields Hc1 and Hc2. The differences between monocrystalline and ceramic systems are also discussed.
Resumo:
The progressive myoclonic epilepsies (PMEs) are a clinically and etiologically heterogeneous group of symptomatic epilepsies characterized by myoclonus, tonic-clonic seizures, psychomotor regression and ataxia. Different disorders have been classified as PMEs. Of these, the group of neuronal ceroid lipofuscinoses (NCLs) comprise an entity that has onset in childhood, being the most common cause of neurodegeneration in children. The primary aim of this thesis was to dissect the molecular genetic background of patients with childhood onset PME by studying candidate genes and attempting to identify novel PME-associated genes. Another specific aim was to study the primary protein properties of the most recently identified member of the NCL-causing proteins, MFSD8. To dissect the genetic background of a cohort of Turkish patients with childhood onset PME, a screen of the NCL-associated genes PPT1, TPP1, CLN3, CLN5, CLN6, MFSD8, CLN8 and CTSD was performed. Altogether 49 novel mutations were identified, which together with 56 mutations found by collaborators raised the total number of known NCL mutations to 364. Fourteen of the novel mutations affect the recently identified MFSD8 gene, which had originally been identified in a subset of mainly Turkish patients as the underlying cause of CLN7 disease. To investigate the distribution of MFSD8 defects, a total of 211 patients of different ethnic origins were evaluated for mutations in the gene. Altogether 45 patients from nine different countries were provided with a CLN7 molecular diagnosis, denoting the wide geographical occurrence of MFSD8 defects. The mutations are private with only one having been established by a founder-effect in the Roma population from the former Czechoslovakia. All mutations identified except one are associated with the typical clinical picture of variant late-infantile NCL. To address the trafficking properties of MFSD8, lysosomal targeting of the protein was confirmed in both neuronal and non-neuronal cells. The major determinant for this lysosomal sorting was identified to be an N-terminal dileucine based signal (9-EQEPLL-14), recognized by heterotetrameric AP-1 adaptor proteins, suggesting that MFSD8 takes the direct trafficking pathway en route to the lysosomes. Expression studies revealed the neurons as the primary cell-type and the hippocampus and cerebellar granular cell layer as the predominant regions in which MFSD8 is expressed. To identify novel genes associated with childhood onset PME, a single nucleotide polymorphism (SNP) genomewide scan was performed in three small families and 18 sporadic patients followed by homozygosity mapping to determine the candidate loci. One of the families and a sporadic patient were positive for mutations in PLA2G6, a gene that had previously been shown to cause infantile neuroaxonal dystrophy. Application of next-generation sequencing of candidate regions in the remaining two families led to identification of a homozygous missense mutation in USP19 for the first and TXNDC6 for the second family. Analysis of the 18 sporadic cases mapped the best candidate interval in a 1.5 Mb region on chromosome 7q21. Screening of the positional candidate KCTD7 revealed six mutations in seven unrelated families. All patients with mutations in KCTD7 were reported to have early onset PME, rapid disease progression leading to dementia and no pathologic hallmarks. The identification of KCTD7 mutations in nine patients and the clinical delineation of their phenotype establish KCTD7 as a gene for early onset PME. The findings presented in this thesis denote MFSD8 and KCTD7 as genes commonly associated with childhood onset symptomatic epilepsy. The disease-associated role of TXNDC6 awaits verification through identification of additional mutations in patients with similar phenotypes. Completion of the genetic spectrum underlying childhood onset PMEs and understanding of the gene products functions will comprise important steps towards understanding the underlying pathogenetic mechanisms, and will possibly shed light on the general processes of neurodegeneration and nervous system regulation, facilitating the diagnosis, classification and possibly treatment of the affected cases.
Resumo:
The effect of aluminosilicate (Al2SiO5) on the upturn characteristics of ZnO varistor ceramics has been investigated. Addition of Al2SiO5 shifts the point of upturn above 10(4) A cm(-2). The extended nonlinearity in the high current density region is better correlatable to the presence of higher density of trap stales and changing pattern of trap depths at the grain boundary interface as much as the grain interior conductivity. Microstructure studies show the formation and involvement of a liquid phase during sintering. The secondary phases, predominantly are antimony spinel, Zn7Sb2O12, zinc silicate, Zn2SiO4 and magnesium aluminium silicate. MgAl2Si3O10. Energy dispersive X-ray analyses (EDAX) show that Al and Si are distributed more in the grain boundaries and within the secondary phases than in the grain interiors. Capacitance-voltage analyses and dielectric dispersion studies indicate the presence of negative capacitance and associated resonance, indicative of the oscillatory charge redistribution involving increased trapping at the interface states. The admittance spectroscopy data show that the type of trap slates remains unaltered whereas the addition of Al2SiO5 increases the density of low energy traps. (C) 1997 Published by Elsevier Science S.A.
Resumo:
A combination of numerical and analytical techniques is used to analyse the effect of magnetic field and encapsulated layer on the onset of oscillatory Marangoni instability in a two layer system. Oscillatory Marangoni instability is possible for a deformed free surface only when the system is heated from above. It is observed that the existence of a second layer has a positive effect on Marangoni overstability with magnetic field whereas it has an opposite effect without magnetic field.
Resumo:
In this work, the incubation period for the onset of sphalerite to wurtzite transformation in isolated ZnS nanoparticles 2 to 7 nm in size was determined via the in situ isothermal annealing of as-synthesized sphalerite nanoparticles in a transmission electron microscope (TEM). Nanoparticles sitting on the TEM grid were well separated from each other in order to minimize particle sintering during the annealing operation. The phase transformation onset was observed at 300 degrees C, 350 degrees C, and 400 degrees C after 90, 10, and 4 min, respectively. These time-temperature data for the phase transformation onset were then used to calculate the activation energy for the nucleation of the wurtzite phase in 2 to 7 nm sphalerite particles. The activation energy determined was 24 Kcal/mol. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3622625]
Resumo:
Spontaneous halide ejection from a three-coordinate Lewis acid has been shown to offer a remarkable new route to cationic metal complexes featuring a linear, multiply bonded boron-donor Ligand. The exploitation of electron-rich [CpM(PR3)(2)] fragments within boryl systems of the type LnMB(hal)NR2 leads to the spontaneous formation in polar solvents of chemically robust borylene complexes, [LnM(BNR2)](+), with exceptionally low electrophilicity and short M-B bonds. This is reflected by M-B distances (ca. 1.80 angstrom for FeB systems) which are more akin to alkyl-/aryl-substituted borylene complexes and, perhaps most strikingly, by the very low exothermicity associated with the binding of pyridine to the two-coordinate boron center (Delta H = -7.4 kcal mol(-1), cf. -40.7 kcal mol(-1) for BCl3). Despite the strong pi electron release from the metal fragment implied by this suppressed reactivity and by such short M-B bonds, the barrier to rotation about the Fe=B bond in the unsymmetrical variant [CpFe(dmpe)(BN{C6H4OMe-4}Me)](+) is found to be very small (ca. 2.9 kcal mol(-1)). This apparent contradiction is rationalized by the orthogonal orientations of the HOMO and HOMO-2 orbitals of the [CpML2](+) fragment, which mean that the M-B pi interaction does not fall to zero even in the highest energy conformation.
Resumo:
In this study, we present the spontaneous self-assembly of designed simplest aromatic cyclic dipeptides of (L-Phg-L-Phg) and (D-Phg-L-Phg) to form highly stable two-dimensional (2D) nano- and mesosheets with large lateral surface area. Various microscopy data revealed that the morphology of 2D mesosheets resembles the hierarchical natural materials with layered structure. Solution and solid-state NMR studies on cyclo(L-Phg-L-Phg) revealed the presence of strong (N-H-O) hydrogen-bonded molecular chains supported by aromatic pi-pi interactions to form 2D mesosheets. Interestingly, cyclo(D-Phg-L-Phg) self-assembles to form single-crystalline as well as non-crystalline 2D rhomboid sheets with large lateral dimension. X-ray diffraction analysis revealed the stacking of (N-H-O) hydrogen-bonded molecular layers along c-axis supported by aromatic pi-pi interactions. The thermogravimetric analysis shows two transitions with overall high thermal stability attributed to layered hierarchy found in 2D mesosheets.
Resumo:
The factorization theorem for exclusive processes in perturbative QCD predicts the behavior of the pion electromagnetic form factor F(t) at asymptotic spacelike momenta t(= -Q(2)) < 0. We address the question of the onset energy using a suitable mathematical framework of analytic continuation, which uses as input the phase of the form factor below the first inelastic threshold, known with great precision through the Fermi-Watson theorem from pi pi elastic scattering, and the modulus measured from threshold up to 3 GeV by the BABAR Collaboration. The method leads to almost model-independent upper and lower bounds on the spacelike form factor. Further inclusion of the value of the charge radius and the experimental value at -2.45 GeV2 measured at JLab considerably increases the strength of the bounds in the region Q(2) less than or similar to 10 GeV2, excluding the onset of the asymptotic perturbative QCD regime for Q(2) < 7 GeV2. We also compare the bounds with available experimental data and with several theoretical models proposed for the low and intermediate spacelike region.
Resumo:
Several constitutive inequalities have been proposed in the literature to quantify the notion that ‘stress increases with strain’ in an elastic material. Due to some inherent shortcomings in them, which we discuss, we propose a new tensorial criterion for isotropic materials. We also present necessary conditions in terms of elasticity tensors for the onset of elastic instabilities.
Resumo:
Highly stable, branched gold nanoworms are formed spontaneously in an acetamide-based room temperature molten solvent without any additional external stabilizing or aggregating agent. The nanoworms can be anchored onto solid substrates such as indium tin oxide (ITO) without any change in morphology. The anchored nanoworms are explored as substrates for surface enhanced Raman scattering (SERS) studies using non-fluorescent 4-mercaptobenzoic acid (4-MBA) and fluorescent rhodamine 6G (R6G) as probe molecules. The anchored nanostructured particles respond to near IR (1064 nm) as well as visible (785, 632.8 and 514 nm) excitation lasers and yield good surface enhancement in Raman signals. Enhancement factors of the order 10(6)-10(7) are determined for the analytes using a 1064 nm excitation source. Minimum detection limits based on adsorption from ethanolic solutions of 1028 M 4-MBA and aqueous solutions of 1027 M R6G are achieved. Experimental Raman frequencies and frequencies estimated by DFT calculations are in fairly good agreement. SERS imaging of the nanostructures suggests that the substrates comprising of three dimensional, highly interlinked particles are more suited than particles fused in one dimension. The high SERS activity of the branched nanoworms may be attributed to both electromagnetic and charge transfer effects.
Resumo:
A dynamical instability is observed in experimental studies on micro-channels of rectangular cross-section with smallest dimension 100 and 160 mu m in which one of the walls is made of soft gel. There is a spontaneous transition from an ordered, laminar flow to a chaotic and highly mixed flow state when the Reynolds number increases beyond a critical value. The critical Reynolds number, which decreases as the elasticity modulus of the soft wall is reduced, is as low as 200 for the softest wall used here (in contrast to 1200 for a rigid-walled channel) The instability onset is observed by the breakup of a dye-stream introduced in the centre of the micro-channel, as well as the onset of wall oscillations due to laser scattering from fluorescent beads embedded in the wall of the channel. The mixing time across a channel of width 1.5 mm, measured by dye-stream and outlet conductance experiments, is smaller by a factor of 10(5) than that for a laminar flow. The increased mixing rate comes at very little cost, because the pressure drop (energy requirement to drive the flow) increases continuously and modestly at transition. The deformed shape is reconstructed numerically, and computational fluid dynamics (CFD) simulations are carried out to obtain the pressure gradient and the velocity fields for different flow rates. The pressure difference across the channel predicted by simulations is in agreement with the experiments (within experimental errors) for flow rates where the dye stream is laminar, but the experimental pressure difference is higher than the simulation prediction after dye-stream breakup. A linear stability analysis is carried out using the parallel-flow approximation, in which the wall is modelled as a neo-Hookean elastic solid, and the simulation results for the mean velocity and pressure gradient from the CFD simulations are used as inputs. The stability analysis accurately predicts the Reynolds number (based on flow rate) at which an instability is observed in the dye stream, and it also predicts that the instability first takes place at the downstream converging section of the channel, and not at the upstream diverging section. The stability analysis also indicates that the destabilization is due to the modification of the flow and the local pressure gradient due to the wall deformation; if we assume a parabolic velocity profile with the pressure gradient given by the plane Poiseuille law, the flow is always found to be stable.
Resumo:
Frohlich, Morchio and Strocchi long ago proved that the Lorentz invariance is spontaneously broken in QED because of infrared effects. We develop a simple model where the consequences of this breakdown can be explicitly and easily calculated. For this purpose, the superselected U(1) charge group of QED is extended to a superselected ``Sky'' group containing direction-dependent gauge transformations at infinity. It is the analog of the Spi group of gravity. As Lorentz transformations do not commute with Sky, they are spontaneously broken. These Abelian considerations and model are extended to non-Abelian gauge symmetries. Basic issues regarding the observability of twisted non-Abelian gauge symmetries and of the asymptotic ADM symmetries of quantum gravity are raised.