976 resultados para SPIN ASYMMETRY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a new version of the density-matrix renormalization group we determine the phase diagram of a model of an antiferromagnetic Heisenberg spin chain where the spins interact with quantum phonons. A quantum phase transition from a gapless spin-fluid state to a gapped dimerized phase occurs at a nonzero value of the spin-phonon coupling. The transition is in the same universality class as that of a frustrated spin chain, to which the model maps in the diabatic limit. We argue that realistic modeling of known spin-Peierls materials should include the effects of quantum phonons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phospholipids in plasma membranes of erythrocytes, as well as platelets, lymphocytes and other cells are asymmetrically distributed, with sphingomyelin and phosphatidylcholine residing predominantly in the outer leaflet of the bilayer, and phosphatidylserine and phosphatidylethanolamine in the inner leaflet. It is known that Ca2+ can disrupt the phospholipid asymmetry by activation of a protein known as phospholipid scramblase, which affects bidirectional phospholipid movement in a largely non-selective manner. As Ca2+ also inhibits aminophospholipid translocase, whose Mg2+-ATPase activity is responsible for active translocation of aminophospholipids from the outer to the inner leaflet, it is important to accurately determine the sensitivity of scramblase to intracellular free Ca2+. In the present study we have utilized the favourable K-d, of Mag-fura-2 for calcium in the high micromolar range to determine free Ca2+ levels associated with lipid scrambling in resealed human red cell ghosts. The Ca2+ sensitivity was measured in parallel to the translocation of a fluorescent-labelled lipid incorporated into the ghost bilayer. The phospholipid scrambling was found to be half-maximally activated at 63-88 mu M free intracellular Ca2+. The wider applicability of the method and the physiological implications of the calcium sensitivity determined is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present some exact results for the effect of disorder on the critical properties of an anisotropic XY spin chain in a transverse held. The continuum limit of the corresponding fermion model is taken and in various cases results in a Dirac equation with a random mass. Exact analytic techniques can then be used to evaluate the density of states and the localization length. In the presence of disorder the ferromagnetic-paramagnetic or Ising transition of the model is in the same universality class as the random transverse field Ising model solved by Fisher using a real-space renormalization-group decimation technique (RSRGDT). If there is only randomness in the anisotropy of the magnetic exchange then the anisotropy transition (from a ferromagnet in the x direction to a ferromagnet in the y direction) is also in this universality class. However, if there is randomness in the isotropic part of the exchange or in the transverse held then in a nonzero transverse field the anisotropy transition is destroyed by the disorder. We show that in the Griffiths' phase near the Ising transition that the ground-state energy has an essential singularity. The results obtained for the dynamical critical exponent, typical correlation length, and for the temperature dependence of the specific heat near the Ising transition agree with the results of the RSRODT and numerical work. [S0163-1829(99)07125-8].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a method for measuring single spins embedded in a solid by probing two-electron systems with a single-electron transistor (SET). Restrictions imposed by the Pauli principle on allowed two-electron states mean that the spin state of such systems has a profound impact on the orbital states (positions) of the electrons, a parameter which SET's are extremely well suited to measure. We focus on a particular system capable of being fabricated with current technology: a Te double donor in Si adjacent to a Si/SiO2, interface and lying directly beneath the SET island electrode, and we outline a measurement strategy capable of resolving single-electron and nuclear spins in this system. We discuss the limitations of the measurement imposed by spin scattering arising from fluctuations emanating from the SET and from lattice phonons. We conclude that measurement of single spins, a necessary requirement for several proposed quantum computer architectures, is feasible in Si using this strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the results of spin ladder models associated with the Lie algebras su(2(n)) to the case of the orthogonal and symplectic algebras o(2(n)), sp(2(n)) where n is the number of legs for the system. Two classes of models are found whose symmetry, either orthogonal or symplectic, has an explicit n dependence. Integrability of these models is shown for an arbitrary coupling of XX-type rung interactions and applied magnetic field term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for a spin-1/2 ladder system with two legs is introduced. It is demonstrated that this model is solvable via the Bethe ansatz method for arbitrary values of the rung coupling J. This is achieved by a suitable mapping from the Hubbard model with appropriate twisted boundary conditions. We determine that a phase transition between gapped and gapless spin excitations occurs at the critical value J(c) = 1/2 of the rung coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two integrable quantum spin ladder systems will be introduced associated with the fundamental su(2 \2) solution of the Yang-Baxter equation. The first model is a generalized quantum Ising system with Ising rung interactions. In the second model the addition of extra interactions allows us to impose Heisenberg rung interactions without violating integrability. The existence of a Bethe ansatz solution for both models allows us to investigate the elementary excitations for antiferromagnetic rung couplings. We find that the first model does not show a gap whilst in the second case there is a gap for all positive values of the rung coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dermatoglyphic measures are of interest to schizophrenia research because they serve as persistent markers of deviant development in foetal life. Several studies have reported alterations in A–B ridge counts, total finger ridge counts and measures related to asymmetry in schizophrenia. The aim of this study was to assess these measures in an Australian catchment area, case-control study. Individuals with psychosisŽns246.were drawn from a catchment-area prevalence study, and well controlsŽns229. were recruited from the same area. Finger and palm prints were taken usingan inkless technique and all dermatoglyphic measures were assessed by a trained rater blind to case status. The dermatoglyphic measures Žfinger ridge count, A–B ridge count, and their derived asymmetry measures. were divided into quartiles based on the distribution of these variables in controls. The main analysis Žlogistic regression controlled for age and sex.examined all psychotic disorders, with planned subgroup analyses comparing controls with Ž1. nonaffective psychosis Žschizophrenia, delusional disorder, schizophreniform psychosis, atypical psychosis.andŽ2. affective psychosis Ždepression with psychosis, bipolar disorder, schizoaffective psychosis.. There were no statistically significant alterations in the odds of havinga psychotic disorder for any of the dermatoglyphic measures. The results did not change when we examined affective and nonaffective psychosis separately. The dermatoglyphic features that distinguish schizophreniar psychosis in other studies were not identified in this Australian study. Regional variations in these findings may provide clues to differential ethnicrgenetic and environmental factors that are associated with schizophrenia. The Stanley Foundation supported this project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has recently been stated that the parametrization of the time variables in the one-dimensional (I-D) mixing-frequency electron spin-echo envelope modulation (MIF-ESEEM) experiment is incorrect and hence the wrong frequencies for correlated nuclear transitions are predicted. This paper is a direct response to such a claim, its purpose being to show that the parametrization in land 2-D MIF-ESEEM experiments possesses the same form as that used in other 4-pulse incrementation schemes and predicts the same correlation frequencies. We show that the parametrization represents a shearing transformation of the 2-D time-domain and relate the resulting frequency domain spectrum to the HYSCORE spectrum in terms of a skew-projection. It is emphasized that the parametrization of the time-domain variables may be chosen arbitrarily and affects neither the computation of the correct nuclear frequencies nor the resulting resolution. The usefulness or otherwise of the MIF parameters \gamma\ > 1 is addressed, together with the validity of the original claims of the authors with respect to resolution enhancement in cases of purely homogeneous and inhomogeneous broadening. Numerical simulations are provided to illustrate the main points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron spin transient nutation (ESTN) experiments show that the spin multiplicity of the ground state of C-60(3-) in frozen solution is a doublet with S = 1/2. In purified samples, there is no evidence for excited states or other species with higher multiplicity. In the anions Of C120On- (n = 2, 3, 4), where the CW EPR experiments have shown that a mixture of species is present, ESTN experiments confirm that a doublet with S = 1/2 is associated with the 3- anion and triplets with S = 1 are associated with the 2- and 4- anions. A weak nutation peak attributable to m(s) = -1/2 1/2 transitions within a quartet state may arise from association of anions with spins of 1/2 and 1 in solute aggregates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The divided visual field technique was used to investigate the pattern of brain asymmetry in the perception of positive/approach and negative/withdrawal facial expressions. A total of 80 undergraduate students (65 female, 15 male) were distributed in five experimental groups in order to investigate separately the perception of expressions of happiness, surprise, fear, sadness, and the neutral face. In each trial a target and a distractor expression were presented simultaneously in a computer screen for 150 ms and participants had to determine the side (left or right) on which the target expression was presented. Results indicated that expressions of happiness and fear were identified faster when presented in the left visual field, suggesting an advantage of the right hemisphere in the perception of these expressions. Fewer judgement errors and faster reaction times were also observed for the matching condition in which emotional faces were presented in the left visual field and neutral faces in the right visual field. Other results indicated that positive expressions (happiness and surprise) were perceived faster and more accurately than negative ones (sadness and fear). Main results tend to support the right hemisphere hypothesis, which predicts a better performance of the right hemisphere to perceive emotions, as opposed to the approach-withdrawal hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically study the Hilbert space structure of two neighboring P-donor electrons in silicon-based quantum computer architectures. To use electron spins as qubits, a crucial condition is the isolation of the electron spins from their environment, including the electronic orbital degrees of freedom. We provide detailed electronic structure calculations of both the single donor electron wave function and the two-electron pair wave function. We adopted a molecular orbital method for the two-electron problem, forming a basis with the calculated single donor electron orbitals. Our two-electron basis contains many singlet and triplet orbital excited states, in addition to the two simple ground state singlet and triplet orbitals usually used in the Heitler-London approximation to describe the two-electron donor pair wave function. We determined the excitation spectrum of the two-donor system, and study its dependence on strain, lattice position, and interdonor separation. This allows us to determine how isolated the ground state singlet and triplet orbitals are from the rest of the excited state Hilbert space. In addition to calculating the energy spectrum, we are also able to evaluate the exchange coupling between the two donor electrons, and the double occupancy probability that both electrons will reside on the same P donor. These two quantities are very important for logical operations in solid-state quantum computing devices, as a large exchange coupling achieves faster gating times, while the magnitude of the double occupancy probability can affect the error rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of spin-orbit mixing and nephelauxetic effects in the electronic spectra of nickel(II)-encapsulating complexes involving mixed nitrogen and sulfur donors is reported. As the number of sulfur donors is systematically varied through the series [Ni(N6-xSx)](2+) (x = 0-6), the spin-forbidden (3)A(2)g --> E-1(g) and (3)A(2g) --> (1)A(1g) transitions undergo a considerable reduction in energy whereas the spin-allowed transitions are relatively unchanged. The [Ni(diAMN(6)sar)](2+) and [Ni(AMN(5)Ssar)](2+) complexes exhibit an unusual band shape for the (3)A(2g) --> T-3(2g) transition which is shown to arise from spin-orbit mixing of the E spin-orbit levels associated with the E-1(g) and T-3(2g) states. A significant differential nephelauxetic effect also arises from the covalency differences between the t(2g) and e(g) orbitals with the result that no single set of Racah B and C interelectron repulsion parameters adequately fit the observed spectra. Using a differential covalency ligand-field model, the spectral transitions are successfully reproduced with three independent variables corresponding to 10Dq and the covalency parameters f(t) and f(e), associated with the t(2g) and e(g) orbitals, respectively. The small decrease in f(t) from unity is largely attributed to central-field covalency effects whereas the dramatic reduction in f(e) with increasing number of sulfur donors is a direct consequence of the increased metal-ligand covalency associated with the sulfur donors. Covalency differences between the t(2g) and e(g) orbitals also result in larger 10Dq values than those obtained simply from the energy of the (3)A(2g) --> T-3(2g) spin-allowed transition.