956 resultados para SPECTRAL EFFICIENCY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have demonstrated the feasibility of error-free DWDM 8×40 Gb/s transmission over an 800 km SMF/DCF link with 0.8 bit/s/Hz spectral efficiency without polarization multiplexing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Impact of duty cycle on the optimisation of ultra-narrow VSB filtering in wavelength allocated CS-RZ Nx40Gbit/s DWDM transmission is investigated. A feasibility has been confirmed of over 600 km with 0.64 bit/s/Hz spectral efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transmission of a 73.7 Tb/s (96x3x256-Gb/s) DP-16QAM mode-division- multiplexed signal over 119km of few-mode fiber transmission line incorporating an inline multi mode EDFA and a phase plate based mode (de-)multiplexer is demonstrated. Data-aided 6x6 MIMO digital signal processing was used to demodulate the signal. The total demonstrated net capacity, taking into account 20% of FEC-overhead and 7.5% additional overhead (Ethernet and training sequences), is 57.6 Tb/s, corresponding to a spectral efficiency of 12 bits/s/Hz. © 2012 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Applying direct error counting, we assess the performance of 20 Gbit/s wavelength-division multiplexing return-to-zero differential phase-shift keying (RZ-DPSK) transmission at 0.4 bit/(s Hz) spectral efficiency for application on installed non-zero dispersion-shifted fibre based transoceanic submarine systems. The impact of the pulse duty cycle on the system performance is investigated and the reliability of the existing theoretical approaches to the BER estimation for the RZ-DPSK format is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Future high capacity optical links will have to make use of frequent signal regeneration to enable long distance transmission. In this respect, the role of all-optical signal processing becomes increasingly important because of its potential to mitigate signal impairments at low cost and power consumption. More substantial benefits are expected if regeneration is achieved simultaneously on a multiple signal band. Until recently, this had been achieved only for on-off keying modulation formats. However, as in future transmission links the information will be encoded also in the phase for enhancing the spectral efficiency, novel subsystem concepts will be needed for multichannel processing of such advanced signal formats. In this paper we show that phase sensitive amplifiers can be an ideal technology platform for developing such regenerators and we discuss our recent demonstration of the first multi-channel regenerator for phase encoded signals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In optical communications, a high spectral efficiency can be realized by applying high order modulation formats such as 8QAM, 16QAM and 64QAM. However, depending on the system's requirements (bandwidth, performance and transmission distance), the maximum spectral efficiency may not be achievable with the regular 2m-array QAM formats. In this case, a hybrid modulation format, such as QPSK/8QAM, can provide an effective solution. In this work, we deliver the optimum design for single channel coherent optical orthogonal frequency division multiplexing systems with hybrid QPSK/8QAM modulation format. We also discuss a simple but effective strategy for applying hybrid QAMs for long-haul optical communications without considering sophisticated bit and power loading algorithms developed for wireless communications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transmission of a net 467-Gb/s PDM-16QAM Nyquist-spaced superchannel is reported with an intra-superchannel net spectral efficiency (SE) of 6.6 (b/s)/Hz, over 364-km SMF-28 ULL ultra-low loss optical fiber, enabled by bi-directional second-order Raman amplification and digital nonlinearity compensation. Multi-channel digital back-propagation (MC-DBP) was applied to compensate for nonlinear interference; an improvement of 2 dB in Q2 factor was achieved when 70-GHz DBP bandwidth was applied, allowing an increase in span length of 37 km.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this talk we investigate the usage of spectrally shaped amplified spontaneous emission (ASE) in order to emulate highly dispersed wavelength division multiplexed (WDM) signals in an optical transmission system. Such a technique offers various simplifications to large scale WDM experiments. Not only does it offer a reduction in transmitter complexity, removing the need for multiple source lasers, it potentially reduces the test and measurement complexity by requiring only the centre channel of a WDM system to be measured in order to estimate WDM worst case performance. The use of ASE as a test and measurement tool is well established in optical communication systems and several measurement techniques will be discussed [1, 2]. One of the most prevalent uses of ASE is in the measurement of receiver sensitivity where ASE is introduced in order to degrade the optical signal to noise ratio (OSNR) and measure the resulting bit error rate (BER) at the receiver. From an analytical point of view noise has been used to emulate system performance, the Gaussian Noise model is used as an estimate of highly dispersed signals and has had consider- able interest [3]. The work to be presented here extends the use of ASE by using it as a metric to emulate highly dispersed WDM signals and in the process reduce WDM transmitter complexity and receiver measurement time in a lab environment. Results thus far have indicated [2] that such a transmitter configuration is consistent with an AWGN model for transmission, with modulation format complexity and nonlinearities playing a key role in estimating the performance of systems utilising the ASE channel emulation technique. We conclude this work by investigating techniques capable of characterising the nonlinear and damage limits of optical fibres and the resultant information capacity limits. REFERENCES McCarthy, M. E., N. Mac Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats," 2014 European Conference on IEEE Optical Communication (ECOC), 2014. 2. Ellis, A., N. Mac Suibhne, F. Gunning, and S. Sygletos, “Expressions for the nonlinear trans- mission performance of multi-mode optical fiber," Opt. Express, Vol. 21, 22834{22846, 2013. Vacondio, F., O. Rival, C. Simonneau, E. Grellier, A. Bononi, L. Lorcy, J. Antona, and S. Bigo, “On nonlinear distortions of highly dispersive optical coherent systems," Opt. Express, Vol. 20, 1022-1032, 2012.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A real-time 5×21.6 Gbit/s WDM electro-optical transceiver is presented. Optical carriers were spaced by 20 GHz and each one transmitted four orthogonally overlapping broadband subcarriers. Only analogue electronics were employed, achieving an unprecedented spectral efficiency in DSP-less SCM links.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper studies the key aspects of an optical link which transmits a broadband microwave filter bank multicarrier (FBMC) signal. The study is presented in the context of creating an all-analogue real-time multigigabit orthogonal frequency division multiplexing electro-optical transceiver for short range and high-capacity data center networks. Passive microwave filters are used to perform the pulse shaping of the bit streams, allowing an orthogonal transmission without the necessity of digital signal processing (DSP). Accordingly, a cyclic prefix that would cause a reduction in the net data rate is not required. An experiment consisting of three orthogonally spaced 2.7 Gbaud quadrature phase shift keyed subchannels demonstrates that the spectral efficiency of traditional DSP-less subcarrier multiplexed links can be potentially doubled. A sensitivity of -29.5 dBm is achieved in a 1-km link.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electro-optical transceivers can be implemented employing all-analog signal processing in order to achieve low values of power consumption and latency. This paper shows that the spectral efficiency of such solutions can be increased by combining orthogonal multicarrier techniques and off-the-shelf microwave components. A real-time 108-Gbit/s experiment was performed emulating a wavelength division multiplexing (WDM) system composed of five optical channels. The optical carriers were provided by an externally injected gain switched optical frequency comb. Each optical channel transmitted a 21.6-Gbit/s orthogonal subcarrier multiplexing (SCM) signal that was modulated and demodulated in the electrical domain without the requirement for digital signal processing. The net data rate remained higher than 100 Gbit/s after taking into account forward error correction overheads. The use of orthogonally overlapping subchannels achieves an unprecedented spectral efficiency in all-analog real-time broadband WDM/SCM links.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has been actively considered as a potential candidate for long-haul transmission and 400 Gb/s to 1 Tb/s Ethernet transport because of its high spectral efficiency, efficient implementation, flexibility and robustness against linear impairments such as chromatic dispersion and polarization mode dispersion. However, due to the long symbol duration and narrow subcarrier spacing, CO-OFDM systems are sensitive to laser phase noise and fibre nonlinearity induced penalties. As a result, the development of CO-OFDM transmission technology crucially relies on efficient techniques to compensate for the laser phase noise and fibre nonlinearity impairments. In this thesis, high performance and low complexity digital signal processing techniques for laser phase noise and fibre nonlinearity compensation in CO-OFDM transmissions are demonstrated. For laser phase noise compensation, three novel techniques, namely quasipilot-aided, decision-directed-free blind and multiplier-free blind are introduced. For fibre nonlinear compensation, two novel techniques which are referred to as phase conjugated pilots and phase conjugated subcarrier coding, are proposed. All these abovementioned digital signal processing techniques offer high performances and flexibilities while requiring relatively low complexities in comparison with other existing phase noise and nonlinear compensation techniques. As a result of the developments of these digital signal processing techniques, CO-OFDM technology is expected to play a significant role in future ultra-high capacity optical network. In addition, this thesis also presents preliminary study on nonlinear Fourier transform based transmission schemes in which OFDM is a highly suitable modulation format. The obtained result paves the way towards a truly flexible nonlinear wave-division multiplexing system that allows the current nonlinear transmission limitations to be exceeded.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, we proposed the use of device-to-device (D2D) communications for extending the coverage area of active base stations, for public safety communications with partial coverage. A 3GPP standard compliant D2D system level simulator is developed for HetNets and public safety scenarios and used to evaluate the performance of D2D discovery and communications underlying cellular networks. For D2D discovery, the benefits of time-domain inter-cell interference coordi- nation (ICIC) approaches by using almost blank subframes were evaluated. Also, the use of multi-hop is proposed to improve, even further, the performance of the D2D discovery process. Finally, the possibility of using multi-hop D2D communications for extending the coverage area of active base stations was evaluated. Improvements in energy and spectral efficiency, when compared with the case of direct UE-eNB communi- cations, were demonstrated. Moreover, UE power control techniques were applied to reduce the effects of interference from neighboring D2D links.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing demand for Internet data traffic in wireless broadband access networks requires both the development of efficient, novel wireless broadband access technologies and the allocation of new spectrum bands for that purpose. The introduction of a great number of small cells in cellular networks allied to the complimentary adoption of Wireless Local Area Network (WLAN) technologies in unlicensed spectrum is one of the most promising concepts to attend this demand. One alternative is the aggregation of Industrial, Science and Medical (ISM) unlicensed spectrum to licensed bands, using wireless networks defined by Institute of Electrical and Electronics Engineers (IEEE) and Third Generation Partnership Project (3GPP). While IEEE 802.11 (Wi-Fi) networks are aggregated to Long Term Evolution (LTE) small cells via LTE / WLAN Aggregation (LWA), in proposals like Unlicensed LTE (LTE-U) and LWA the LTE air interface itself is used for transmission on the unlicensed band. Wi-Fi technology is widespread and operates in the same 5 GHz ISM spectrum bands as the LTE proposals, which may bring performance decrease due to the coexistence of both technologies in the same spectrum bands. Besides, there is the need to improve Wi-Fi operation to support scenarios with a large number of neighbor Overlapping Basic Subscriber Set (OBSS) networks, with a large number of Wi-Fi nodes (i.e. dense deployments). It is long known that the overall Wi-Fi performance falls sharply with the increase of Wi-Fi nodes sharing the channel, therefore there is the need for introducing mechanisms to increase its spectral efficiency. This work is dedicated to the study of coexistence between different wireless broadband access systems operating in the same unlicensed spectrum bands, and how to solve the coexistence problems via distributed coordination mechanisms. The problem of coexistence between different networks (i.e. LTE and Wi-Fi) and the problem of coexistence between different networks of the same technology (i.e. multiple Wi-Fi OBSSs) is analyzed both qualitatively and quantitatively via system-level simulations, and the main issues to be faced are identified from these results. From that, distributed coordination mechanisms are proposed and evaluated via system-level simulations, both for the inter-technology coexistence problem and intra-technology coexistence problem. Results indicate that the proposed solutions provide significant gains when compare to the situation without distributed coordination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose cyclic prefix single carrier full-duplex transmission in amplify-and-forward cooperative spectrum sharing networks to achieve multipath diversity and full-duplex spectral efficiency. Integrating full-duplex transmission into cooperative spectrum sharing systems results in two intrinsic problems: 1) the residual loop interference occurs between the transmit and the receive antennas at the secondary relays and 2) the primary users simultaneously suffer interference from the secondary source (SS) and the secondary relays (SRs). Thus, examining the effects of residual loop interference under peak interference power constraint at the primary users and maximum transmit power constraints at the SS and the SRs is a particularly challenging problem in frequency selective fading channels. To do so, we derive and quantitatively compare the lower bounds on the outage probability and the corresponding asymptotic outage probability for max–min relay selection, partial relay selection, and maximum interference relay selection policies in frequency selective fading channels. To facilitate comparison, we provide the corresponding analysis for half-duplex. Our results show two complementary regions, named as the signal-to-noise ratio (SNR) dominant region and the residual loop interference dominant region, where the multipath diversity and spatial diversity can be achievable only in the SNR dominant region, however the diversity gain collapses to zero in the residual loop interference dominant region.