949 resultados para SPATIAL VARIATION
Resumo:
Palms show clear niche segregation patterns along topographic gradients in tropical forests, with some species associated to terra firme and others to seasonally flooded areas. The aim of this study was to quantitatively describe the fine-scale spatial variation within a palm community, tracking the changes in species' abundance along environmental gradients associated with a perennial stream the eastern Amazon. The study of palm communities was based on 60 forest plots in which all adult palms were counted. We found a total of 566 palms in a community containing 11 species. Furthermore, we found a significant separation in the palm community between seasonally-flooded and terra firme forests. We found a gradient with various densities of the three most abundant palm species within the first 100 m away from the flooded area. Other species were located exclusively in the terra firme forest. The abundance of the six most common species were distributed in relation to humidity gradients from floodplains to terra firme, with palm distribution from the most flood-tolerant to the least flood-tolerant palm species as follows: Euterpe oleracea, Attalea phalerata and Socratea exorrhiza (species with floodplain affinity), Astrocaryum gynacanthum, Astrocaryum aculeatum, Attalea maripa (species with terra firme affinity)
Resumo:
Tese de Doutoramento em Ciências (Especialidade de Geologia)
Resumo:
A partir de las últimas décadas se ha impulsado el desarrollo y la utilización de los Sistemas de Información Geográficos (SIG) y los Sistemas de Posicionamiento Satelital (GPS) orientados a mejorar la eficiencia productiva de distintos sistemas de cultivos extensivos en términos agronómicos, económicos y ambientales. Estas nuevas tecnologías permiten medir variabilidad espacial de propiedades del sitio como conductividad eléctrica aparente y otros atributos del terreno así como el efecto de las mismas sobre la distribución espacial de los rendimientos. Luego, es posible aplicar el manejo sitio-específico en los lotes para mejorar la eficiencia en el uso de los insumos agroquímicos, la protección del medio ambiente y la sustentabilidad de la vida rural. En la actualidad, existe una oferta amplia de recursos tecnológicos propios de la agricultura de precisión para capturar variación espacial a través de los sitios dentro del terreno. El óptimo uso del gran volumen de datos derivado de maquinarias de agricultura de precisión depende fuertemente de las capacidades para explorar la información relativa a las complejas interacciones que subyacen los resultados productivos. La covariación espacial de las propiedades del sitio y el rendimiento de los cultivos ha sido estudiada a través de modelos geoestadísticos clásicos que se basan en la teoría de variables regionalizadas. Nuevos desarrollos de modelos estadísticos contemporáneos, entre los que se destacan los modelos lineales mixtos, constituyen herramientas prometedoras para el tratamiento de datos correlacionados espacialmente. Más aún, debido a la naturaleza multivariada de las múltiples variables registradas en cada sitio, las técnicas de análisis multivariado podrían aportar valiosa información para la visualización y explotación de datos georreferenciados. La comprensión de las bases agronómicas de las complejas interacciones que se producen a la escala de lotes en producción, es hoy posible con el uso de éstas nuevas tecnologías. Los objetivos del presente proyecto son: (l) desarrollar estrategias metodológicas basadas en la complementación de técnicas de análisis multivariados y geoestadísticas, para la clasificación de sitios intralotes y el estudio de interdependencias entre variables de sitio y rendimiento; (ll) proponer modelos mixtos alternativos, basados en funciones de correlación espacial de los términos de error que permitan explorar patrones de correlación espacial de los rendimientos intralotes y las propiedades del suelo en los sitios delimitados. From the last decades the use and development of Geographical Information Systems (GIS) and Satellite Positioning Systems (GPS) is highly promoted in cropping systems. Such technologies allow measuring spatial variability of site properties including electrical conductivity and others soil features as well as their impact on the spatial variability of yields. Therefore, site-specific management could be applied to improve the efficiency in the use of agrochemicals, the environmental protection, and the sustainability of the rural life. Currently, there is a wide offer of technological resources to capture spatial variation across sites within field. However, the optimum use of data coming from the precision agriculture machineries strongly depends on the capabilities to explore the information about the complex interactions underlying the productive outputs. The covariation between spatial soil properties and yields from georeferenced data has been treated in a graphical manner or with standard geostatistical approaches. New statistical modeling capabilities from the Mixed Linear Model framework are promising to deal with correlated data such those produced by the precision agriculture. Moreover, rescuing the multivariate nature of the multiple data collected at each site, several multivariate statistical approaches could be crucial tools for data analysis with georeferenced data. Understanding the basis of complex interactions at the scale of production field is now within reach the use of these new techniques. Our main objectives are: (1) to develop new statistical strategies, based on the complementarities of geostatistics and multivariate methods, useful to classify sites within field grown with grain crops and analyze the interrelationships of several soil and yield variables, (2) to propose mixed linear models to predict yield according spatial soil variability and to build contour maps to promote a more sustainable agriculture.
Resumo:
Plaice (Pleuronectes platessa, L.) and dab (Limanda limanda, L.) are among the most abundant flatfishes in the north-eastern Atlantic region and the dominant species in shallow coastal nursery grounds. With increasing pressures on commercial flatfish stocks in combination with changing coastal environments, better knowledge of population dynamics during all life stages is needed to evaluate variability in year-class strength and recruitment to the fishery. The aim of this research was to investigate the complex interplay of biotic and abiotic habitat components influencing the distribution, density and growth of plaice and dab during the vulnerable juvenile life stage and to gain insight in spatial and temporal differences in nursery habitat quality along the west coast of Ireland. Intraspecific variability in plaice diet was observed at different spatial scales and showed a link with condition, recent growth and morphology. This highlights the effect of food availability on habitat quality and the need to consider small scale variation when attempting to link habitat quality to feeding, growth and condition of juvenile flatfish. There was evidence of trophic, spatial and temporal resource partitioning between juvenile plaice and dab allowing the co-existence of morphologically similar species in nursery grounds. In the limited survey years there was no evidence that the carrying capacity of the studied nursery grounds was reached but spatial and interannual variations in fish growth indicated fluctuating environments in terms of food availability, predator densities, sediment features and physico-chemical conditions. Predation was the most important factor affecting habitat quality for juvenile plaice and dab with crab densities negatively correlated to fish condition whereas shrimp densities were negatively associated with densities of small-sized juveniles in spring. A comparison of proxies for fish growth showed the advantage of Fulton’s K for routine use whereas RNA:DNA ratios proved less powerful when short-term environmental fluctuations are lacking. This study illustrated how distinct sets of habitat features can drive spatial variation in density and condition of juvenile flatfish highlighting the value of studying both variables when modeling habitat requirements. The habitat models generated in this study also provide a powerful tool to predict potential climate and anthropogenic impacts on the distribution and condition of juveniles in flatfish nurseries. The need for effective coastal zone management was emphasized to ensure a sustainable use of coastal resources and successful flatfish recruitment to the fishery.
Resumo:
The Common whelk, Buccinum undatum (L.) is a conspicuous benthic scavenger in Irish waters, and is a valuable fisheries resource in South East Ireland. B. undatum is fished in many parts of its range, and previous studies have shown that certain life history parameters, which vary with location, make this species vulnerable to overexploitation. This makes research into each exploited stock essential to ensure sustainable fisheries management of the species. In 2003, interest in B. undatum as a complementary species in the inshore fishery east of the Inishowen Peninsula, North West Ireland, initiated investigation into fisheries related biological and population aspects of the species in this region. The current study presents estimates of spatial variation and density of the stock, size at age and growth rates, size and age at onset of sexual maturity, and timing of reproductive events in the region of the North West Irish whelk fishery for the period of June 2003 to May 2004. Analysis of variance of the total shell length of whelk landings to the fishery was conducted over spatial scales of fishing pot, fishing string and landings to vessels. Landings varied significantly in shell length at the spatial scale at which whelks are attracted to baited pots, but did not vary significantly over larger spatial scales. Depletion estimates of stock density from fisheries derived Catch per Unit Effort data and a mark re-capture experiment estimate 0.134 - 0.227 whelks per m2. Two independent methods of age determination found similar growth logistics functions for B. undatum.Modal analysis of length frequency distribution of landings to the fishery estimated symptotic length, Leo = 151.64 mm and Brody growth coefficient, K = 0.04. Analysis of the striae in individual opercula, where each stria was found to represent annual growth, estimated Loo = 137.73 mm and K = 0.12. Common whelks in the region of the North West Irish whelk fishery grow slowly and are long-lived, with 19 opercula striae recorded in one individual. Onset of sexual maturity is late, and no sex-specific differences in size or age at maturity were determined in the present study. Males were found to achieve sexual maturity at 83.30 ± 10.77 mm, and 8.9 - 11.1 years of age, and females at 82.62 ± 10.68 mm and 8.8 to 11.1 years of age. Systematic observations of reproductive events, including histological changes to the female ovary and male testis, and changes in the size and mass of body components, suggest that breeding occurred between the autumn and winter months of October and December 2003. Biological aspects of B. undatum in the study region are compared with previous studies from other regions, and discussed in relation to sustainable management of the fishery.
Resumo:
Becker (1968) and Stigler (1970) provide the germinal works for an economic analysis of crime, and their approach has been utilised to consider the response of crime rates to a range of economic, criminal and socioeconomic factors. Until recently however this did not extend to a consideration of the role of personal indebtedness in explaining the observed pattern of crime. This paper uses the Becker (1968) and Stigler (1970) framework, and extends to a fuller consideration of the relationship between economic hardship and theft crimes in an urban setting. The increase in personal debt in the past decade has been significant, which combined with the recent global recession, has led to a spike in personal insolvencies. In the context of the recent recession it is important to understand how increases in personal indebtedness may spillover into increases in social problems like crime. This paper uses data available at the neighbourhood level for London, UK on county court judgments (CCJ's) granted against residents in that neighbourhood, this is our measure of personal indebtedness, and examines the relationship between a range of community characteristics (economic, socio-economic, etc), including the number of CCJ's granted against residents, and the observed pattern of theft crimes for three successive years using spatial econometric methods. Our results confirm that theft crimes in London follow a spatial process, that personal indebtedness is positively associated with theft crimes in London, and that the covariates we have chosen are important in explaining the spatial variation in theft crimes. We identify a number of interesting results, for instance that there is variation in the impact of covariates across crime types, and that the covariates which are important in explaining the pattern of each crime type are largely stable across the three periods considered in this analysis.
Resumo:
The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradient is subject to the interplay of biotic interactions in complement to abiotic environmental filtering. Accounting for complex biotic interactions for a wide array of species remains so far challenging. Here, we propose to use food web models that can infer the potential interaction links between species as a constraint in species distribution models. Using a plant-herbivore (butterfly) interaction dataset, we demonstrate that this combined approach is able to improve both species distribution and community forecasts. Most importantly, this combined approach is very useful in rendering models of more generalist species that have multiple potential interaction links, where gap in the literature may be recurrent. Our combined approach points a promising direction forward to model the spatial variation of entire species interaction networks. Our work has implications for studies of range shifting species and invasive species biology where it may be unknown how a given biota might interact with a potential invader or in future climate.
Resumo:
It is generally accepted that most plant populations are locally adapted. Yet, understanding how environmental forces give rise to adaptive genetic variation is a challenge in conservation genetics and crucial to the preservation of species under rapidly changing climatic conditions. Environmental variation, phylogeographic history, and population demographic processes all contribute to spatially structured genetic variation, however few current models attempt to separate these confounding effects. To illustrate the benefits of using a spatially-explicit model for identifying potentially adaptive loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi-scale spatial variation present in a data set, were incorporated into a landscape genetic approach relating AFLP frequencies with 23 environmental variables. Four major findings emerged. 1) Fifteen loci were significantly correlated with at least one predictor variable (R (adj) (2) > 0.5). 2) Models including PCNM variables identified eight more potentially adaptive loci than models run without spatial variables. 3) When compared to outlier detection methods, the landscape genetic approach detected four of the same loci plus 11 additional loci. 4) Temperature, precipitation, and solar radiation were the three major environmental factors driving potentially adaptive genetic variation in G. nivalis. Techniques presented in this paper offer an efficient method for identifying potentially adaptive genetic variation and associated environmental forces of selection, providing an important step forward for the conservation of non-model species under global change.
Resumo:
Spatial variation in the pattern of natural selection can promote local adaptation and genetic differentiation between populations. Because heritable melanin-based ornaments can signal resistance to environmentally mediated elevation in glucocorticoids, to oxidative stress and parasites, populations may vary in the mean degree of melanic coloration if selection on these phenotypic aspects varies geographically. Within a population of Swiss barn owls (Tyto alba), the size of eumelanic spots is positively associated with survival, immunity and resistance to stress, but it is yet unknown whether Tyto species that face stressful environments evolved towards a darker eumelanic plumage. Because selection regimes vary along environmental gradients, we examined whether melanin-based traits vary clinally and are expressed to a larger extent in the tropics where parasites are more abundant than in temperate zones. To this end, we considered 39 barn owl species distributed worldwide. Barn owl species living in the tropics displayed larger eumelanic spots than those found in temperate zones. This was, however, verified in the northern hemisphere only. Parasites being particularly abundant in the tropics, they may promote the evolution of darker eumelanic ornaments.
Resumo:
We analysed the spatial variation in morphological diversity (MDiv) and species richness (SR) for 91 species of Neotropical Triatominae to determine the ecological relationships between SR and MDiv and to explore the roles that climate, productivity, environmental heterogeneity and the presence of biomes and rivers may play in the structuring of species assemblages. For each 110 km x 110 km-cell on a grid map of America, we determined the number of species (SR) and estimated the mean Gower index (MDiv) based on 12 morphological attributes. We performed bootstrapping analyses of species assemblages to identify whether those assemblages were more similar or dissimilar in their morphology than expected by chance. We applied a multi-model selection procedure and spatial explicit analyses to account for the association of diversity-environment relationships. MDiv and SR both showed a latitudinal gradient, although each peaked at different locations and were thus not strictly spatially congruent. SR decreased with temperature variability and MDiv increased with mean temperature, suggesting a predominant role for ambient energy in determining Triatominae diversity. Species that were more similar than expected by chance co-occurred near the limits of the Triatominae distribution in association with changes in environmental variables. Environmental filtering may underlie the structuring of species assemblages near their distributional limits.
Resumo:
Spatial variation in the pattern of natural selection can promote local adaptation and genetic differentiation between populations. Because heritable melanin-based ornaments can signal resistance to environmentally mediated elevation in glucocorticoids, to oxidative stress and parasites, populations may vary in the mean degree of melanic coloration if selection on these phenotypic aspects varies geographically. Within a population of Swiss barn owls (Tyto alba), the size of eumelanic spots is positively associated with survival, immunity and resistance to stress, but it is yet unknown whether Tyto species that face stressful environments evolved towards a darker eumelanic plumage. Because selection regimes vary along environmental gradients, we examined whether melanin-based traits vary clinally and are expressed to a larger extent in the tropics where parasites are more abundant than in temperate zones. To this end, we considered 39 barn owl species distributed worldwide. Barn owl species living in the tropics displayed larger eumelanic spots than those found in temperate zones. This was, however, verified in the northern hemisphere only. Parasites being particularly abundant in the tropics, they may promote the evolution of darker eumelanic ornaments.
Resumo:
RÉSUMÉ Une espèce est rarement composée d'une population unique. Parce que les individus ont des capacités de dispersion limitées et que les paysages sont des mosaïques d'habitats, la plupart des espèces sont plutôt composées de sous-populations connectées par la migration. Cette variation spatiale influence directement la distribution de la variabilité génétique dans et entre les populations. Durant ce travail, nous avons abordé certains des processus populationnels qui ont joué un rôle supposé dans l'apparition de nouvelles espèces au sein du genre Trochulus. Plus précisément, nous avons tenté d'évaluer les impacts respectifs de l'isolement passé (facteurs historiques) et présent (facteurs locaux). Nous avons d'abord pu montrer que les faibles capacités de dispersion des escargots terrestres ont directement influencé leur histoire évolutive à toutes les échelles spatiales et temporelles. En réduisant l'effet homogénéisant de la migration, une faible dispersion maintient dans les populations les traces génétiques d'évènements passés. A l'échelle de la distribution globale de Trochulus villosus, ces traces ont permis de reconstruire une histoire faite d'isolements et d'expansions de populations. En combinant des données génétiques avec une modélisation de la niche climatique passée, il a été possible de proposer un scénario significativement meilleur que toutes les hypothèses alternatives que nous avons testées. A l'échelle locale par contre, l'héritage historique est difficile à distinguer de la dynamique actuelle. Ce fut le cas des lignées mitochondriales du complexe sericeus-hispidus : les deux principales lignées étaient phylogénétiquement éloignées, avaient eu des démographies passées différentes et corrélaient avec des différences morphologiques. D'un autre côté, le flux de gène nucléaire était fort, contredisant l'idée de deux espèces cryptiques isolées reproductivement. Pour pouvoir conclure à la présence ou non de deux espèces, il nous a manqué des informations locales sur la dynamique des populations et les conditions écologiques que l'on trouve dans la région d'étude. Enfin, nous avons pu souligner que la connectivité entre populations d'escargots est soumise à la qualité des habitats et à leur organisation spatiale. Les escargots sont dépendants d'un habitat et s'y adaptent, comme l'indiquent la présence de «poils » uniquement sur la coquille d'espèces vivant dans des habitats humides ou la corrélation entre morphologie et habitat au sein du complexe sericeus-hispidus. Logiquement donc, les escargots migrent préférentiellement au travers d'habitats favorables comme l'a montré la réduction de flux de gènes au travers des prairies chez T. villosus (une espèce forestière). De ces données, nous pouvons supposer que les populations d'escargots en particulier, et des espèces à faible dispersion en général, ont de fortes chances d'être affectées par les changements climatiques, avec de probables implications pour leurs histoires évolutives. SUMMARY : Species rarely consists in a single population. Because individuals have limited dispersal abilities, because landscapes are habitat patchworks, most species are made of several subpopulations connected by migration. This spatial variation has consequences on the distribution of genetic diversity within and between populations, creating a structure among the populations. During the present work, we investigated some of the population processes assumed to have played an important role on the speciation within the genus Trochulus. More specifically, we questioned the respective impacts of past (historical factors) or present (local factors) population isolations. We first could show that the poor dispersal abilities of land snails have had profound impacts on their evolutionary histories at all spatial and temporal scales. Low dispersal maintains a strong signature of past events in the populations by minimising the homogenising effects of geneflow. At the scale of Trochulus villosus global distribution, they allowed to retrieve the detailed history of this species population isolations and expansions. Combining a large genetic dataset with paleo-climatic niche modelling ended up with a historical scenario significantly better than all traditional alternatives we tested. At local scale on the contrary, past events become difficult to tease apart from ongoing processes. This was the case for the divergent mitochondria) lineages within the sericeus-hispidus complex: the two principal lineages appeared to be phylogenetically distant, to have experienced different demographic histories and to correlate with morphological differences. On the other hand, nuclear (present day) geneflow was high, contradicting the idea of two reproductively isolated cryptic species. Information on the local population dynamics and environmental conditions are lacking to be able to decide whether past isolation has indeed resulted here in new species. Finally, we emphasised the importance of the habitat types present in a landscape as well as their spatial organisation for the population connectivity of land snails. These species are tightly dependent on a habitat and adapt to it as shown by thé occurrence of hair-like structures only in species living in humid environments or by the correlation between shell morphology and habitat in the sericeus-hispidus complex. As a result, land snails preferentially migrate through favourable habitats: Trochulus villosus, a forest species, had its geneflow significantly reduced across meadows. From these data, we can hypothesise that the populations of land snails in particular and of low dispersing species in general are likely to be strongly affected by the ongoing climate changes, with potential major consequences on their evolutionary histories.
Resumo:
Extinction, recolonization, and local adaptation are common in natural spatially structured populations. Understanding their effect upon genetic variation is important for systems such as genetically modified organism management or avoidance of drug resistance. Theoretical studies on the effect of extinction and recolonization upon genetic variance started appearing in the 1970s, but the role of local adaptation still has no good theoretical basis. Here we develop a model of a haploid species in a metapopulation in which a locally adapted beneficial allele is introduced. We study the effect of different spatial patterns of local adaptation, and different metapopulation dynamics, upon the fixation probability of the beneficial allele. Controlling for the average selection pressure, we find that a small area of positive selection can significantly increase the global probability of fixation. However, local adaptation becomes less important as extinction rate increases. Deme extinction and recolonization have a spatial smoothing effect that effectively reduces spatial variation in fitness.
Resumo:
In this paper we present a Bayesian image reconstruction algorithm with entropy prior (FMAPE) that uses a space-variant hyperparameter. The spatial variation of the hyperparameter allows different degrees of resolution in areas of different statistical characteristics, thus avoiding the large residuals resulting from algorithms that use a constant hyperparameter. In the first implementation of the algorithm, we begin by segmenting a Maximum Likelihood Estimator (MLE) reconstruction. The segmentation method is based on using a wavelet decomposition and a self-organizing neural network. The result is a predetermined number of extended regions plus a small region for each star or bright object. To assign a different value of the hyperparameter to each extended region and star, we use either feasibility tests or cross-validation methods. Once the set of hyperparameters is obtained, we carried out the final Bayesian reconstruction, leading to a reconstruction with decreased bias and excellent visual characteristics. The method has been applied to data from the non-refurbished Hubble Space Telescope. The method can be also applied to ground-based images.
Resumo:
Temporal variability was studied in the common sea urchin Paracentrotus lividus through the analysis of the genetic composition of three yearly cohorts sampled over two consecutive springs in a locality in northwestern Mediterranean. Individuals were aged using growth ring patterns observed in tests and samples were genotyped for five microsatellite loci. No reduction of genetic diversity was observed relative to a sample of the adult population from the same location or within cohorts across years. FST and amova results indicated that the differentiation between cohorts is rather shallow and not significant, as most variability is found within cohorts and within individuals. This mild differentiation translated into estimates of effective population size of 90100 individuals. When the observed excess of homozygotes was taken into account, the estimate of the average number of breeders increased to c. 300 individuals. Given our restricted sampling area and the known small-scale heterogeneity in recruitment in this species, our results suggest that at stretches of a few kilometres of shoreline, large numbers of progenitors are likely to contribute to the larval pool at each reproduction event. Intercohort variation in our samples is six times smaller than spatial variation between adults of four localities in the western Mediterranean. Our results indicate that, notwithstanding the stochastic events that take place during the long planktonic phase and during the settlement and recruitment processes, reproductive success in this species is high enough to produce cohorts genetically diverse and with little differentiation between them. Further research is needed before the link between genetic structure and underlying physical and biological processes can be well established.