996 resultados para SODIUM EXCRETION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of dietary sodium restriction on perceived intensity of and preference for the taste of salt was evaluated in 76 adults, 25-49 years, with diastolic blood pressure between 79-90 mmHg. Participants were volunteers from clinical Hypertension Prevention Trials (HPT), at the University of California, Davis and the University of Minnesota, Minneapolis. Participants followed one of four HPT diets: 1600 mg Na+/day (NA, n=lS), 1600 mg Na+ plus 3200 mg K+/day (NK, n=lS), 1600 mg Na+/day plus energy restriction to achieve weight loss (NW, n=l3) and weight loss only (WT, n=l3). All participants attended regularly scheduled nutri­tion intervention meetings designed to help them achieve the HPT dietary goals. A fifth, no-intervention group, consisted of 20, no-diet-change controls CCN). Sodium, potassium and energy intakes were monitored by analysis of single, 24-hour food records and corresponding overnight urine speci­mens, obtained at baseline and after 12 and 24 weeks of intervention. Hedonic responses to sodium chloride in a prepared cream of green bean soup were assessed by two methods : 1) scaling of like/dislike for an NaCl concentration series on 10-cm graphie line scales and 2) ad libitum mixing of unsalted and salted soups to maximum level of liking. Salt content of the mixes was analyzed by sodium ion-selective electrode. The concentration series was also rated for perceived saltiness­intensity on similar graphie line scales. Tests were conducted at base­line and after approximately 1, 3, 6, 8, 10, 13 and 24 weeks of intervention. Reduction in sodium intake and excretion in NA, NK and NW partici­pants was accompanied by a shift in preference toward less saltiness in soup. The pattern of hedonic responses changed over time: scores for high NaCl concentrations decreased progressively while scores for low concentrations increased. Hedonic maxima shifted fran a concentration of 0.55% at the onset to 0.1-0.2% added NaCl at week 24. During the same time period, the preferred concentration of ad libitum mixes declined 50%. These shifts occurred independently of changes in salti­ness intensity ratings, potassium or energy intakes, and were consistent across the two participating study sites. Like/dislike and sd. libitum responses were similar after 13 and 24 weeks of diet, as were measures of sodium intake and excretion. These findings suggest that after three months of sodium restriction, preference for salt had readjusted to a lower level, reflective of lower sodium intake. Mechanisms underlying the change in preference are unclear, but may include sensory, context, physiological as well as behavioral effects. In contrast, few changes were noted within WT and CN groups. The pattern of hedonic responses varied little in controls while the WT group showed increased liking for mid-range NaCl concentrations. Small, but significant fluctuations in ad libitum mix concentration occurred in both of these groups, but the differences appeared to be random rather than systematic. The results of this study indicate that preference for the taste of salt declines progressively toward a new baseline following reductions in sodium intake. These alterations may enhance maintenance of low­sodium diets for the treatment and prevention of hypertension. Further investigation is needed to establish the degree to which long-term com­pliance is contingent upon variation in salt taste preference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the effect of ω-3 polyunsaturated fatty acid (PUFA) deficiency during development on sodium appetite. Being raised on an ω-3 PUFA deficient diet increased the intake of 0.5 M NaCl following furosemide-induced sodium depletion by 40%. This occurred regardless of the diet they were maintained on later in life, and the increased consumption persisted for 3 days. In a second study, animals were administered furosemide and low-dose captopril. Sodium consumption of deficient raised animals was again higher than that of the control raised. Fos immunoreactivity in brain areas associated with sodium appetite and excretion were not influenced by diet. Our findings indicate that inadequate dietary ω-3 PUFA during development results in an exaggerated sodium appetite later in life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Dietary sodium and potassium are involved in the pathogenesis of cardiovascular disease. Data exploring the cardiovascular outcomes associated with these electrolytes within Australian children is sparse. Furthermore, an objective measure of sodium and potassium intake within this group is lacking. OBJECTIVE: The primary aim of the Salt and Other Nutrient Intakes in Children ("SONIC") study was to measure sodium and potassium intakes in a sample of primary schoolchildren located in Victoria, Australia, using 24-hour urine collections. Secondary aims were to identify the dietary sources of sodium and potassium, examine the association between these electrolytes and cardiovascular risk factors, and assess children's taste preferences and saltiness perception of manufactured foods. METHODS: A cross-sectional study was conducted in a convenience sample of schoolchildren attending primary schools in Victoria, Australia. Participants completed one 24-hour urine collection, which was analyzed for sodium, potassium, and creatinine. Completeness of collections was assessed using collection time, total volume, and urinary creatinine. One 24-hour dietary recall was completed to assess dietary intake. Other data collected included blood pressure, body weight, height, waist and hip circumference. Children were also presented with high and low sodium variants of food products and asked to discriminate salt level and choose their preferred variant. Parents provided demographic information and information on use of discretionary salt. Descriptive statistics will be used to describe sodium and potassium intakes. Linear and logistic regression models with clustered robust standard errors will be used to assess the association between electrolyte intake and health outcomes (blood pressure and body mass index/BMI z-score and waist circumference) and to assess differences in taste preference and discrimination between high and low sodium foods, and correlations between preference, sodium intake, and covariates. RESULTS: A total of 780 children across 43 schools participated. The results from this study are expected at the end of 2015. CONCLUSIONS: This study will provide the first objective measure of sodium and potassium intake in Australian schoolchildren and improve our understanding of the relationship of these electrolytes to cardiovascular risk factors. Furthermore, this study will provide insight into child taste preferences and explore related factors. Given the cardiovascular implications of consuming too much sodium and too little potassium, monitoring of these nutrients during childhood is an important public health initiative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 5-hydroxytryptamine (5-HT)(1A) receptor system plays a prominent role in a variety of physiological functions and behavior and regulation of this responsiveness of the receptor system has been implicated in the central regulation of water intake and urinary excretion. The lateral septal area (LSA) exhibits a high density of 5-HT1A receptors, as well as a subpopulation of oxytocin (OT) receptors. Here we report the effects of pMPPF (a selective 5-HT1A antagonist), d(CH2)(5)[Tyr(Me)(2)Thr(4), Orn(5), Tyr(NH2)(9)]-vasotocin (an OT antagonist), and that 5-HT1A receptor system is regulated as a consequence of activation of the Na+ channel by veratridine. Cannulae were implanted into the LSA of rats to enable the introduction of the drugs. Injections of 8-OH-DPAT (a 5-HT1A agonist) blocked water intake and increased urinary excretion, while pMPPF or the OT antagonist injected bilaterally before 8-OH-DPAT blocked its inhibitory effect on water intake and its diuretic effect. In contrast, increases in extracellular sodium levels induced by the sodium channel modulator, veratridine, enhanced 5-HT1A responsiveness for water intake and reduced the diuretic effects induced by 8-OH-DPAT. These trials demonstrated that the responsiveness of the 5-HT1A receptor system in the LSA can be enhanced or depressed as a consequence of an induced rise in extracellular sodium. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine whether central α1 and α2-adrenergic mechanisms are involved in urinary sodium and potassium excretion and urine volume induced by angiotensin II (ANGII), these renal parameters were measured in volume-expanded Holtzman rats with cannulas implanted into lateral ventricle (LV) and lateral hypothalamus (LH). The injection of ANGII into LV in rats with volume expansion reduced the sodium, potassium and urine excretion in comparison to the control injections of isotonic saline, whereas prazosin (α1 antagonist) potentiated these effects. Clonidine (α2 agonist) and yohimbine (α2 antagonist) injected into LH previous to injection of ANGII into LV also abolished the inhibitory effect of ANGII. These results suggest that the discharge of central alpha-adrenergic receptors has dual inhibitory and excitatory effect on antinatriuretic, antikaliuretic and antidiuretic effect induced by central ANGII in volume-expanded rats. © 1995.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we investigated an interaction between noradrenergic and cholinergic pathways of the medial septal area (MSA) on the control of water intake and urinary electrolyte excretion by means of injection of their respective agonists. Noradrenaline (a nonspecific α-adrenergic agonist) and clonidine (an α2-adrenergic agonist), but not phenylephrine (an α1-adrenergic agonist), induced natriuresis and kaliuresis. α-Adrenergic activation had no effect on the natriuresis and kaliuresis induced by carbachol (a cholinergic agonist) and it inhibited the antinatriuresis and antikaliuresis induced by isoproterenol (a ß-adrenergic agonist). Interactions related to volume excretion are complex. α-Adrenergic activation induced a mild diuresis and inhibited the antidiuresis induced by isoproterenol, but phenylephrine combined with carbachol induced antidiuresis. The water intake induced by carbachol was inhibited by clonidine and noradrenaline, but not phenylephrine. These results show an asymmetry in the interaction between α-adrenergic and cholinergic receptors concerning water intake and electrolyte excretion. © 1992.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renal sodium retention in experimental liver cirrhosis originates from the distal nephron sensitive to aldosterone. The aims of this study were to (1) determine the exact site of sodium retention along the aldosterone-sensitive distal nephron, and (2) to evaluate the role of aldosterone and mineralocorticoid receptor activation in this process. Liver cirrhosis was induced by bile duct ligation in either adrenal-intact or corticosteroid-clamped mice. Corticosteroid-clamp was achieved through adrenalectomy and corticosteroid supplementation with aldosterone and dexamethasone via osmotic minipumps. 24-hours renal sodium balance was evaluated in metabolic cages. Activity and expression of sodium- and potassium-dependent adenosine triphosphatase were determined in microdissected segments of nephron. Within 4-5 weeks, cirrhosis induced sodium retention in adrenal-intact mice and formation of ascites in 50% of mice. At that time, sodium- and potassium-dependent adenosine triphosphatase activity increased specifically in cortical collecting ducts. Hyperaldosteronemia was indicated by increases in urinary aldosterone excretion and in sgk1 (serum- and glucocorticoid-regulated kinase 1) mRNA expression in collecting ducts. Corticosteroid-clamp prevented induction of sgk1 but not cirrhosis-induced sodium retention, formation of ascites and stimulation of sodium- and potassium-dependent adenosine triphosphatase activity and expression (mRNA and protein) in collecting duct. These findings demonstrate that sodium retention in cirrhosis is independent of hyperaldosteronemia and of the activation of mineralocorticoid receptor. CONCLUSION: Bile duct ligation in mice induces cirrhosis which, within 4-5 weeks, leads to the induction of sodium- and potassium-dependent adenosine triphosphatase in cortical collecting ducts, to renal sodium retention and to the formation of ascites. Sodium retention, ascites formation and induction of sodium- and potassium-dependent adenosine triphosphatase are independent of the activation of mineralocorticoid receptors by either aldosterone or glucocorticoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accelerated vascular calcification is a severe complication of chronic kidney disease contributing to high morbidity and mortality in patients undergoing renal replacement therapy. Sodium thiosulfate is increasingly used for the treatment of soft tissue calcifications in calciphylaxis. Therefore, we determined whether it also prevents development of vascular calcifications in chronic kidney disease. We found that uremic rats treated by thiosulfate had no histological evidence of calcification in the aortic wall whereas almost three-fourths of untreated uremic rats showed aortic calcification. Urinary calcium excretion was elevated and the calcium content of aortic, heart, and renal tissue was significantly reduced in the thiosulfate-treated compared to non-treated animals. Sodium thiosulfate treatment transiently lowered plasma ionized calcium and induced metabolic acidosis. It also lowered bone strength in the treated animals compared to their normal controls. Hence, sodium thiosulfate prevented vascular calcifications in uremic rats, likely by enhancing acid- and/or chelation-induced urinary calcium loss. The negative impact on rat bone integrity necessitates a careful risk-benefit analysis before sodium thiosulfate can be used in individual human patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ubiquitylation plays an important role in the control of Na⁺ homeostasis by the kidney. It is well established that the epithelial Na⁺ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney and is also a circadian output gene. In heterologous expression systems, USP2-45 binds to ENaC, deubiquitylates it, and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na⁺ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences from wild-type littermates with respect to the diurnal control of Na⁺ or K⁺ urinary excretion and plasma levels either on a standard diet or after acute and chronic changes to low- and high-Na⁺ diets, respectively. Moreover, they had similar aldosterone levels on either a low- or high-Na⁺ diet. Blood pressure measurements using telemetry did not reveal variations compared with control mice. Usp2-KO mice did not display alterations in expression of genes involved in sodium homeostasis or the ubiquitin system, as evidenced by transcriptome analysis in the kidney. Our data suggest that USP2 does not play a primary role in the control of Na⁺ balance or blood pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A heterozygous mutation (c.643C>A; p.Q215X) in the monocarboxylate transporter 12-encoding gene MCT12 (also known as SLC16A12) that mediates creatine transport was recently identified as the cause of a syndrome with juvenile cataracts, microcornea, and glucosuria in a single family. Whereas the MCT12 mutation cosegregated with the eye phenotype, poor correlation with the glucosuria phenotype did not support a pathogenic role of the mutation in the kidney. Here, we examined MCT12 in the kidney and found that it resides on basolateral membranes of proximal tubules. Patients with MCT12 mutation exhibited reduced plasma levels and increased fractional excretion of guanidinoacetate, but normal creatine levels, suggesting that MCT12 may function as a guanidinoacetate transporter in vivo. However, functional studies in Xenopus oocytes revealed that MCT12 transports creatine but not its precursor, guanidinoacetate. Genetic analysis revealed a separate, undescribed heterozygous mutation (c.265G>A; p.A89T) in the sodium/glucose cotransporter 2-encoding gene SGLT2 (also known as SLC5A2) in the family that segregated with the renal glucosuria phenotype. When overexpressed in HEK293 cells, the mutant SGLT2 transporter did not efficiently translocate to the plasma membrane, and displayed greatly reduced transport activity. In summary, our data indicate that MCT12 functions as a basolateral exit pathway for creatine in the proximal tubule. Heterozygous mutation of MCT12 affects systemic levels and renal handling of guanidinoacetate, possibly through an indirect mechanism. Furthermore, our data reveal a digenic syndrome in the index family, with simultaneous MCT12 and SGLT2 mutation. Thus, glucosuria is not part of the MCT12 mutation syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two distinct molecular types (I and II) of renal proximal tubular brush border Na+/Pi cotransporters have been identified by expression cloning on the basis of their capacity to induce Na+-dependent Pi influx in tracer experiments. Whereas the type II transporters (e.g., NaPi-2 and NaPi-3) resemble well known characteristics of brush border Na+/Pi cotransport, little is known about the properties of the type I transporter (NaPi-1). In contrast to type II, type I transporters produced electrogenic transport only at high extracellular Pi concentrations (> or =3 mM). On the other hand, expression of NaPi-1 induced a Cl- conductance in Xenopus laevis oocytes, which was inhibited by Cl- channel blockers [5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) > niflumic acid >> 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid]. Further, the Cl- conductance was inhibited by the organic anions phenol red, benzylpenicillin (penicillin G), and probenecid. These organic anions induced outwardly directed currents in the absence of Cl-. In tracer studies, we observed uptake of benzylpenicillin with a Km of 0.22 mM; benzylpenicillin uptake was inhibited by NPPB and niflumic acid. These findings suggest that the type I Na+/Pi cotransporter functions also as a novel type of anion channel permeable not only for Cl- but also for organic anions. Such an apical anion channel could serve an important role in the transport of Cl- and the excretion of anionic xenobiotics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arsenic has been classified as a human carcinogen based on epidemiological data however the mechanism of its carcinogenicity is still unclear. Urinary biomarkers for chronic arsenic exposure would be valuable as an early warning indicator for timely interventions. In this study, young female C57BI/6J mice were given drinking water containing 0, 100, 250 and 500 mug As-v/L as sodium arsenate ad libitum for 12 months. Urine was collected bimonthly for urinary arsenic methylation assay and porphyrin analysis. All detectable arsenic species showed strong linear correlation with administered dosage and the arsenic methylation patterns were similar in all three treatment groups. No significant changes of methylation patterns were observed over time for either the control or test groups. Urinary coproporphyrin III was significantly increased in the 8th month in 250 and 500 mug/L groups and remained significantly dose-related after 10 and 12 months. Coproporphyrin I also showed a significant dose-response relationship after 12 months. Our results confirm that urinary arsenic is a useful biomarker for internal dose. The alteration of porphyrin profile suggests that arsenic can affect the heme metabolism and this may occur prior to the onset of arsenic induced carcinogenesis. (C) 2004 Elsevier Ireland Ltd. All rights reserved.