946 resultados para SMOOTH-MUSCLE-CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effects of γ-radiation on cells isolated from the longitudinal smooth muscle layer of the guinea pig ileum, a relatively radioresistant tissue. Single doses (up to 50 Gy) reduced the amount of sarcoplasmatic reticulum and condensed the myofibrils, as shown by electron microscopy 3 days post-irradiation. After that, contractility of smooth muscle strips was reduced. Ca2+ handling was altered after irradiation, as shown in fura-2 loaded cells, with elevated basal intracellular Ca2+, reduced amount of intrareticular Ca2+, and reduced capacitive Ca2+ entry. Radiation also induced apoptosis, judged from flow cytometry of cells loaded with proprium iodide. Electron microscopy showed that radiation caused condensation of chromatin in dense masses around the nuclear envelope, the presence of apoptotic bodies, fragmentation of the nucleus, detachment of cells from their neighbors, and reductions in cell volume. Radiation also caused activation of caspase 12. Apoptosis was reduced by the administration of the caspase inhibitor Z-Val-Ala-Asp-fluoromethyl-ketone methyl ester (Z-VAD-FMK) during the 3 day period after irradiation, and by the chelator of intracellular Ca2+, 1,2-bis(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid (BAPTA), from 1 h before until 2 h after irradiation. BAPTA also reduced the effects of radiation on contractility, basal intracellular Ca2+, amount of intrareticular Ca2+, capacitative Ca2+ entry, and apoptosis. In conclusion, the effects of gamma radiation on contractility, Ca2+ handling, and apoptosis appear due to a toxic action of intracellular Ca2+. Ca2+-induced damage to the sarcoplasmatic reticulum seems a key event in impaired Ca2+ handling and apoptosis induced by γ-radiation. © 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advanced glycation end products, namely AGEs, contribute to long-termed complications of diabetes mellitus, including macroangiopathy, where smooth muscle cells (SMC) proliferation stimulated by platelet-derived growth factor (PDGF) isoforms and insulin-like growth factor-I (IGF-I) plays an important role. The objective of the present study was to investigate the effect of an AGE-modified extracellular matrix protein on IGF-I induced SMC proliferation and on the IGF-I-IGF binding protein 4 (IGFBP-4) axis under basal conditions and after stimulation with PDGF-BB. IGF-I resulted in significantly higher thymidine incorporation in SMC seeded on AGE-modified fibronectin (AGE-FN) in comparison to cells seeded on fibronectin (FN). This augmented proliferation could not be accounted for by increased expression of IGF-IR, by decreased secretion of IGFBP-4, a binding protein that inhibits IGF-I mitogenic effects or by increased IGF-IR autophosphorylation. PDGF-BB did not modulate IGF-IR and IGFBP-4 mRNA expression in any of the substrata, however, this growth factor elicited opposite effects on the IGFBP-4 content in the conditioned media, increasing it in cells plated on FN and diminishing it in cells plated on AGE-FN. These findings suggest that one mechanism by which AGE-modified proteins is involved in the pathogenesis of diabetes-associated atherosclerosis might be by increasing SMC susceptibility to IGF-I mitogenic effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One drawback of in vitro cell culturing is the dedifferentiation process that cells experience. Smooth muscle cells (SMC) also change molecularly and morphologically with long term culture. The main objective of this study was to evaluate if culture passages interfere in vascular SMC mechanical behavior. SMC were obtained from five different porcine arterial beds. Optical magnetic twisting cytometry (OMTC) was used to characterize mechanically vascular SMC from different cultures in distinct passages and confocal microscopy/western blotting, to evaluate cytoskeleton and extracellular matrix proteins. We found that vascular SMC rigidity or viscoelastic complex modulus (G) decreases with progression of passages. A statistically significant negative correlation between G and passage was found in four of our five cultures studied. Phalloidin-stained SMC from higher passages exhibited lower mean signal intensity per cell (confocal microscopy) and quantitative western blotting analysis showed a decrease in collagen I content throughout passages. We concluded that vascular SMC progressively lose their stiffness with serial culture passaging. Thus, limiting the number of passages is essential for any experiment measuring viscoelastic properties of SMC in culture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incipient diabetic retinopathy is characterized by increased capillary permeability and progressive capillary occlusion. The earliest structural change is the loss of pericytes (PC) from the retinal capillaries. With the availability of the XLacZ mouse, which expresses the LacZ reporter in a PC/vascular smooth muscle cell (vSMC) specific fashion, we quantitatively assessed the temporal dynamics of smooth muscle cells in arterioles under hyperglycemic conditions. We induced stable hyperglycemia in XLacZ mice. After 4, 8, and 12 weeks of diabetes retinae were isolated and beta-galactosidase/lectin stained. The numbers of smooth muscle cells were counted in retinal whole mounts, and diameters of retinal radial and branching arterioles and venules were analyzed at different distances apart from the center of the retina. After eight weeks of diabetes, the numbers of vSMCs were significantly reduced in radial arterioles 1000 microm distant from the optic disc. At proximal sites of branching arterioles (400 microm distant from the center), and at distal sites (1000 microm), vSMC were significantly reduced already after 4 weeks (to a maximum of 31 %). These changes were not associated with any measurable variation in vessel diameters. These data indicate quantitatively that hyperglycemia not only causes pericyte loss, but also loss of vSMCs in the retinal vasculature. Our data suggest that arteriolar vSMC in the eye underlie similar regulations which induce early pericyte loss in the diabetic retina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: We examined whether vascular smooth muscle (VSMC) or endothelial cell (EC) migration from internal mammary artery (MA) differed from VSMC or EC migration from saphenous vein (SV). METHODS AND RESULTS: Migration to PDGF-BB (1-10 ng/ml) was lower in VSMC from MA than SV; however, attachment, movement without chemokine, and chemokinesis were identical. Unlike VSMC, migration of EC was similar in response to several mediators. Expression of PDGF receptor-beta was lower in VSMC from MA than SV, while alpha-receptor expression was higher. PDGF-BB-induced RhoA activity was lower in MA than SV, while basal activity was identical. Rosuvastatin and hydroxyfasudil impaired PDGF-BB-induced migration of VSMC from MA and SV. Mevalonate and geranylgeranylpyrophosphate rescued inhibition by rosuvastatin. PDGF-BB induced less stress fiber formation in VSMC from MA than SV. A dominant negative RhoA mutant inhibited stress fiber formation to PDGF-BB, while a constitutively active mutant resulted in maximal stress fiber formation in MA and SV. Rosuvastatin and hydroxyfasudil impaired PDGF-BB-induced stress fiber formation in MA and SV. CONCLUSIONS: VSMC migration to PDGF-BB is lower in MA than SV, which is at least in part related to lower activity of the Rho/ROCK pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequential conversion of estradiol (E) to 2/4-hydroxyestradiols and 2-/4-methoxyestradiols (MEs) by CYP450s and catechol-O-methyltransferase, respectively, contributes to the inhibitory effects of E on smooth muscle cells (SMCs) via estrogen receptor-independent mechanisms. Because medroxyprogesterone (MPA) is a substrate for CYP450s, we hypothesized that MPA may abrogate the inhibitory effects of E by competing for CYP450s and inhibiting the formation of 2/4-hydroxyestradiols and MEs. To test this hypothesis, we investigated the effects of E on SMC number, DNA and collagen synthesis, and migration in the presence and absence of MPA. The inhibitory effects of E on cell number, DNA synthesis, collagen synthesis, and SMC migration were significantly abrogated by MPA. For example, E (0.1micromol/L) reduced cell number to 51+/-3.6% of control, and this inhibitory effect was attenuated to 87.5+/-2.9% by MPA (10 nmol/L). Treatment with MPA alone did not alter any SMC parameters, and the abrogatory effects of MPA were not blocked by RU486 (progesterone-receptor antagonist), nor did treatment of SMCs with MPA influence the expression of estrogen receptor-alpha or estrogen receptor-beta. In SMCs and microsomal preparations, MPA inhibited the sequential conversion of E to 2-2/4-hydroxyestradiol and 2-ME. Moreover, as compared with microsomes treated with E alone, 2-ME formation was inhibited when SMCs were incubated with microsomal extracts incubated with E plus MPA. Our findings suggest that the inhibitory actions of MPA on the metabolism of E to 2/4-hydroxyestradiols and MEs may negate the cardiovascular protective actions of estradiol in postmenopausal women receiving estradiol therapy combined with administration of MPA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidized low-density lipoprotein (oxLDL) induced-apoptosis of vascular cells may participate in plaque instability and rupture. We have previously shown that vascular smooth muscle cells (VSMC) stably expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis than VSMC expressing lower level of caveolin-1, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. In this study we aimed to identify the molecular events involved in oxLDL-induced Ca(2+) influx and their regulation by the structural protein caveolin-1. In VSMC, transient receptor potential canonical-1 (TRPC1) silencing by ARN interference, prevents the Ca(2+) influx and reduces the toxicity induced by oxLDL. Moreover, caveolin-1 silencing induces concomitant decrease of TRPC1 expression and reduces oxLDL-induced-apoptosis of VSMC. OxLDL enhanced the cell surface expression of TRPC1, as shown by biotinylation of cell surface proteins, and induced TRPC1 translocation into caveolar compartment, as assessed by subcellular fractionation. OxLDL-induced TRPC1 translocation was dependent on actin cytoskeleton and associated with a dramatic rise of 7-ketocholesterol (a major oxysterol in oxLDL) into caveolar membranes, whereas the caveolar content of cholesterol was unchanged. Altogether, the reported results show that TRPC1 channels play a role in Ca(2+) influx and Ca(2+) homeostasis deregulation that mediate apoptosis induced by oxLDL. These data also shed new light on the role of caveolin-1 and caveolar compartment as important regulators of TRPC1 trafficking to the plasma membrane and apoptotic processes that play a major role in atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidized low-density lipoprotein (oxLDL)-induced apoptosis of vascular cells may participate to plaque instability and rupture. Caveolin-1 has emerged as an important regulator of several signal transduction pathways and processes that play a role in atherosclerosis. In this study we examined the potential role of caveolin-1 in the regulation of oxLDL-induced Ca(2+) signaling and apoptosis in vascular smooth muscle cells (VSMC). Cells expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. Moreover, caveolin-1 silencing by small interfering RNA decreased the level of apoptotic cells after oxLDL treatment. These findings provide new insights about the potential role of caveolin-1 in the regulation of oxLDL-induced apoptosis in vascular cells and its contribution to the instability of the plaque.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that vasculogenesis, the process by which bone marrow-derived cells are recruited to the tumor and organized to form a blood vessel network de novo, is essential for the growth of Ewing’s sarcoma. We further demonstrated that these bone marrow cells differentiate into pericytes/vascular smooth muscle cells(vSMC) and contribute to the formation of the functional vascular network. The molecular mechanisms that control bone marrow cell differentiation into pericytes/vSMC in Ewing’s sarcoma are poorly understood. Here, we demonstrate that the Notch ligand Delta like ligand 4 (DLL4) plays a critical role in this process. DLL4 is essential for the formation of mature blood vessels during development and in several tumor models. Inhibition of DLL4 causes increased vascular sprouting, decreased pericyte coverage, and decreased vessel functionality. We demonstrate for the first time that DLL4 is expressed by bone marrow-derived pericytes/vascular smooth muscle cells in two Ewing’s sarcoma xenograft models and by perivascular cells in 12 out of 14 patient samples. Using dominant negative mastermind to inhibit Notch, we demonstrate that Notch signaling is essential for bone marrow cell participation in vasculogenesis. Further, inhibition of DLL4 using either shRNA or the monoclonal DLL4 neutralizing antibody YW152F led to dramatic changes in blood vessel morphology and function. Vessels in tumors where DLL4 was inhibited were smaller, lacked lumens, had significantly reduced numbers of bone marrow-derived pericyte/vascular smooth muscle cells, and were less functional. Importantly, growth of TC71 and A4573 tumors was significantly inhibited by treatment with YW152F. Additionally, we provide in vitro evidence that DLL4-Notch signaling is involved in bone marrow-derived pericyte/vascular smooth muscle cell formation outside of the Ewing’s sarcoma environment. Pericyte/vascular smooth muscle cell marker expression by whole bone marrow cells cultured with mouse embryonic stromal cells was reduced when DLL4 was inhibited by YW152F. For the first time, our findings demonstrate a role for DLL4 in bone marrow-derived pericyte/vascular smooth muscle differentiation as well as a critical role for DLL4 in Ewing’s sarcoma tumor growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Norepinephrine (NE) and angiotensin II (Ang II), by promoting extracellular Ca2+ influx, increase Ca2+/calmodulin-dependent kinase II (CaMKII) activity, leading to activation of mitogen-activated protein kinase (MAPK) and cytosolic phospholipase A2 (cPLA2), resulting in release of arachidonic acid (AA) for prostacyclin synthesis in rabbit vascular smooth muscle cells. However, the mechanism by which CaMKII activates MAPK is unclear. The present study was conducted to determine the contribution of AA and its metabolites as possible mediators of CaMKII-induced MAPK activation by NE, Ang II, and epidermal growth factor (EGF) in vascular smooth muscle cells. NE-, Ang II-, and EGF-stimulated MAPK and cPLA2 were reduced by inhibitors of cytochrome P450 (CYP450) and lipoxygenase but not by cyclooxygenase. NE-, Ang II-, and EGF-induced increases in Ras activity, measured by its translocation to plasma membrane, were abolished by CYP450, lipoxygenase, and farnesyltransferase inhibitors. An AA metabolite of CYP450, 20-hydroxyeicosatetraenoic acid (20-HETE), increased the activities of MAPK and cPLA2 and caused translocation of Ras. These data suggest that activation of MAPK by NE, Ang II, and EGF is mediated by a signaling mechanism involving 20-HETE, which is generated by stimulation of cPLA2 by CaMKII. Activation of Ras/MAPK by 20-HETE amplifies cPLA2 activity and releases additional AA by a positive feedback mechanism. This mechanism of Ras/MAPK activation by 20-HETE may play a central role in the regulation of other cellular signaling molecules involved in cell proliferation and growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhanced activity of receptor tyrosine kinases such as the PDGF β-receptor and EGF receptor has been implicated as a contributing factor in the development of malignant and nonmalignant proliferative diseases such as cancer and atherosclerosis. Several epidemiological studies suggest that green tea may prevent the development of cancer and atherosclerosis. One of the major constituents of green tea is the polyphenol epigallocathechin-3 gallate (EGCG). In an attempt to offer a possible explanation for the anti-cancer and anti-atherosclerotic activity of EGCG, we examined the effect of EGCG on the PDGF-BB–, EGF-, angiotensin II-, and FCS-induced activation of the 44 kDa and 42 kDa mitogen-activated protein (MAP) kinase isoforms (p44mapk/p42mapk) in cultured vascular smooth muscle cells (VSMCs) from rat aorta. VSMCs were treated with EGCG (1–100 μM) for 24 h and stimulated with the above mentioned agonists for different time periods. Stimulation of the p44mapk/p42mapk was detected by the enhanced Western blotting method using phospho-specific MAP kinase antibodies that recognized the Tyr204-phosphorylated (active) isoforms. Treatment of VSMCs with 10 and 50 μM EGCG resulted in an 80% and a complete inhibition of the PDGF-BB–induced activation of MAP kinase isoforms, respectively. In striking contrast, EGCG (1–100 μM) did not influence MAP kinase activation by EGF, angiotensin II, and FCS. Similarly, the maximal effect of PDGF-BB on the c-fos and egr-1 mRNA expression as well as on intracellular free Ca2+ concentration was completely inhibited in EGCG-treated VSMCs, whereas the effect of EGF was not affected. Quantification of the immunoprecipitated tyrosine-phosphorylated PDGF-Rβ, phosphatidylinositol 3′-kinase, and phospholipase C-γ1 by the enhanced Western blotting method revealed that EGCG treatment effectively inhibits tyrosine phosphorylation of these kinases in VSMCs. Furthermore, we show that spheroid formation of human glioblastoma cells (A172) and colony formation of sis-transfected NIH 3T3 cells in semisolid agar are completely inhibited by 20–50 μM EGCG. Our findings demonstrate that EGCG is a selective inhibitor of the tyrosine phosphorylation of PDGF-Rβ and its downstream signaling pathway. The present findings may partly explain the anti-cancer and anti-atherosclerotic activity of green tea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The carboxyl-terminal domain of thrombospondin-1 enhances the migration and proliferation of smooth muscle cells. Integrin-associated protein (IAP or CD47) is a receptor for the thrombospondin-1 carboxyl-terminal cell-binding domain and binds the agonist peptide 4N1K (kRFYVVMWKk) from this domain. 4N1K peptide stimulates chemotaxis of both human and rat aortic smooth muscle cells on gelatin-coated filters. The migration on gelatin is specifically blocked by monoclonal antibodies against IAP and a β1 integrin, rather than αvβ3 as found previously for 4N1K-stimulated chemotaxis of endothelial cells on gelatin. Both human and rat smooth muscle cells displayed a weak migratory response to soluble type I collagen; however, the presence of 4N1K peptide or intact thrombospondin-1 provoked a synergistic chemotactic response that was partially blocked by antibodies to α2 and β1 integrin subunits and to IAP. A combination of antiα2 and IAP monoclonal antibodies completely blocked chemotaxis. RGD peptide and antiαvβ3 mAb were without effect. 4N1K and thrombospondin-1 did not augment the chemotactic response of smooth muscle cells to fibronectin, vitronectin, or collagenase-digested type I collagen. Complex formation between α2β1 and IAP was detected by the coimmunoprecipitation of both α2 and β1 integrin subunits with IAP. These data suggest that IAP can associate with α2β1 integrin and modulate its function.