985 resultados para SILICA GLASS
Resumo:
Winter, Rudolf; Jones, A.R.; Greaves, G.N.; Smith, I.H., (2005) 'Na-23, Si-29, and C-13 MAS NMR investigation of glass-forming reactions between Na2CO3 and SiO2', Journal of Physical Chemistry B 109(49) pp.23154-23161 RAE2008
Resumo:
Winter, Rudolf; Jones, A.R.; Florian, P.; Massiot, D., (2005) 'Tracing the reactive melting of glass-forming silicate batches by in situ Na-23 NMR', Journal of Physical Chemistry B 109(10) pp.4324-4332 RAE2008
Resumo:
Electronprobe microanalysis is now widely adopted in tephra studies as a technique for determining the major element geochemistry of individual glass shards. Accurate geochemical characterization is crucial for enabling robust tephra-based correlations; such information may also be used to link the tephra to a specific source and often to a particular eruption. In this article, we present major element analyses for rhyolitic natural glass standards analysed on three different microprobes and the new JEOL FEGSEM 6500F microprobe at Queen’s University Belfast. Despite the scatter in some elements, good comparability is demonstrated among data yielded from this new system, the previous Belfast JEOL-733 Superprobe, the JEOL-8200 Superprobe (Copenhagen) and the existing long-established microprobe facility in Edinburgh. Importantly, our results show that major elements analysed using different microprobes and variable operating conditions allow two high-silica glasses to be discriminated accurately.
Resumo:
A force field model of the Keating type supplemented by rules to break, form, and interchange bonds is applied to investigate thermodynamic and structural properties of the amorphous SiO2 surface. A simulated quench from the liquid phase has been carried out for a silica sample made of 3888 silicon and 7776 oxygen atoms arranged on a slab similar to 40 angstrom thick, periodically repeated along two directions. The quench results into an amorphous sample, exposing two parallel square surfaces of similar to 42 nm(2) area each. Thermal averages computed during the quench allow us to determine the surface thermodynamic properties as a function of temperature. The surface tension turns out to be gamma=310 +/- 20 erg/cm(2) at room temperature and gamma=270 +/- 30 at T=2000 K, in fair agreement with available experimental estimates. The entropy contribution Ts-s to the surface tension is relatively low at all temperatures, representing at most similar to 20% of the surface energy. Almost without exceptions, Si atoms are fourfold coordinated and oxygen atoms are twofold coordinated. Twofold and threefold rings appear only at low concentration and are preferentially found in proximity of the surface. Above the glass temperature T-g=1660 +/- 50 K, the mobility of surface atoms is, as expected, slightly higher than that of bulk atoms. The computation of the height-height correlation function shows that the silica surface is rough in the equilibrium and undercooled liquid phase, becoming smooth below the glass temperature T-g.
Resumo:
Tephrochronology, a key tool in the correlation of Quaternary sequences, relies on the extraction of tephra shards from sediments for visual identification and high-precision geochemical comparison. A prerequisite for the reliable correlation of tephra layers is that the geochemical composition of glass shards remains unaltered by natural processes (e.g. chemical exchange in the sedimentary environment) and/or by laboratory analytical procedures. However, natural glasses, particularly when in the form of small shards with a high surface to volume ratio, are prone to chemical alteration in both acidic and basic environments. Current techniques for the extraction of distal tephra from sediments involve the ‘cleaning’ of samples in precisely such environments and at elevated temperatures. The acid phase of the ‘cleaning’ process risks alteration of the geochemical signature of the shards, while the basic phase leads to considerable sample loss through dissolution of the silica network. Here, we illustrate the degree of alteration and loss to which distal tephras may be prone, and introduce a less destructive procedure for their extraction. This method is based on stepped heavy liquid flotation and which results in samples of sufficient quality for analysis while preserving their geochemical integrity. In trials, this method out-performed chemical extraction procedures in terms of the number of shards recovered and has resulted in the detection of new tephra layers with low shard concentrations. The implications of this study are highly significant because (i) the current database of distal tephra records and their corresponding geochemical signatures may require refinement and (ii) the record of distal tephras may be incomplete due to sample loss induced by corrosive laboratory procedures. It is therefore vital that less corrosive laboratory procedures are developed to make the detection and classification of distal glass tephra more secure.
Resumo:
The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.
Resumo:
Raman scattering in the region 20 to 100 cm -1 for fused quartz, "pyrex" boro-silicate glass, and soft soda-lime silicate glass was investigated. The Raman spectra for the fused quartz and the pyrex glass were obtained at room temperature using the 488 nm exciting line of a Coherent Radiation argon-ion laser at powers up to 550 mW. For the soft soda-lime glass the 514.5 nm exciting line at powers up to 660 mW was used because of a weak fluorescence which masked the Stokes Raman spectrum. In addition it is demonstrated that the low-frequency Raman coupling constant can be described by a model proposed by Martin and Brenig (MB). By fitting the predicted spectra based on the model with a Gaussian, Poisson, and Lorentzian forms of the correlation function, the structural correlation radius (SCR) was determined for each glass. It was found that to achieve the best possible fit· from each of the three correlation functions a value of the SCR between 0.80 and 0.90 nm was required for both quartz and pyrex glass but for the soft soda-lime silicate glass the required value of the SCR. was between 0.50 and 0.60 nm .. Our results support the claim of Malinovsky and Sokolov (1986) that the MB model based on a Poisson correlation function provides a universal fit to the experimental VH (vertical and horizontal polarizations) spectrum for any glass regardless of its chemical composition. The only deficiency of the MB model is its failure to fit the experimental depolarization spectra.
Resumo:
The thesis covers a systematic investigation on the synthesis of silica aerogels and microspheres with tailored porosity, at ambient conditions by varying the experimental parameters as well as using organic templates. Organically modified silica-gelatin and silica-chitosan hybrids were developed for the first time using alkylalkoxysilanes such as MTMS and VTMS. Application of novel silica-biopolymer antiwetting coatings on different substrates such as glass, leather and textile is also demonstrated in the thesis.
Resumo:
Sol–gel glasses with Fe3O4 nanoparticles having particle sizes laying in the range 10–20 nm were encapsulated in the porous network of silica resulting in nanocomposites having both optical and magnetic properties. Spectroscopic and photoluminescence studies indicated that Fe3O4 nanocrystals are embedded in the silica matrix with no strong Si–O–Fe bonding. The composites exhibited a blue luminescence. The optical absorption edge of the composites red shifted with increasing concentration of Fe3O4 in the silica matrix. There is no obvious shift in the position of the luminescence peak with the concentration of Fe3O4 except that the intensity of the peak is decreased. The unique combinations of magnetic and optical properties are appealing for magneto–optical applications.
Resumo:
Sol–gel glasses with Fe3O4 nanoparticles having particle sizes laying in the range 10–20 nm were encapsulated in the porous network of silica resulting in nanocomposites having both optical and magnetic properties. Spectroscopic and photoluminescence studies indicated that Fe3O4 nanocrystals are embedded in the silica matrix with no strong Si–O–Fe bonding. The composites exhibited a blue luminescence. The optical absorption edge of the composites red shifted with increasing concentration of Fe3O4 in the silica matrix. There is no obvious shift in the position of the luminescence peak with the concentration of Fe3O4 except that the intensity of the peak is decreased. The unique combinations of magnetic and optical properties are appealing for magneto–optical applications.
Resumo:
The third-order optical susceptibility and dispersion of the linear refractive index of Er(3+)-doped lead phosphate glass were measured in the wavelength range between 400 and 1940 nm by using the spectrally resolved femtosecond Maker fringes technique. The nonlinear refractive index obtained from the third-order susceptibility was found to be five times higher than that of silica, indicating that Er(3+)-doped lead phosphate glass is a potential candidate to be used as the base component for the fabrication of photonic devices. For comparison purposes, the Z-scan technique was also employed to obtain the values of the nonlinear refractive index of Er(3+)-doped lead phosphate glass at several wavelengths, and the values obtained using the two techniques agree to within 15%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Reliable spectral analysis is only achieved if the spectrum is thoroughly investigated in regard to all hidden and overlapped peaks. This paper describes the steps undertaken to find and separate such peaks in the range of 3000 to 4000 cm(-1) in the case of three different infrared absorption spectra of the glass surface of hydrolyzed silica optical fibers. Peak finding was done by the analysis of the second and fourth derivatives of the digital data, coupled with the available knowledge of infrared spectroscopy of silica-water interaction in the investigated range. Peak separation was accomplished by curve fitting with four different models. The model with the best fit was described by a sum of pure Gaussian peaks. Shoulder limit and detection limit maps were used to validate the revealed spectral features.
Resumo:
Non-crystalline silica was obtained with different particle sizes. Samples were prepared from soluble sodium silicate (water glass) and sulfuric acid solutions. Dialysis was performed for sodium sulfate elimination. Products were dried in a microwave oven, milled and characterized by X-ray powder diffraction, infrared spectrum and sedigraphic analysis. Products milled for more than 120 minutes showed uniform particle size distribution with average silica particle size of 4.5 mu m.
Resumo:
Noncrystalline silica was obtained with low iron, sodium, and nitrate ions concentrations from soluble sodium silicate (water glass) and nitric acid solution. Extractions with nitric acid solution and/or deionized water and/or dialysis were carried out to eliminate soluble metal ions. Products were dried in a microwave oven and characterized by chemical analysis, XRD, and IR. Dialysis seems to be the best treatment for the elimination of sodium and nitrate ions. Silica purified by nitric acid and water extractions followed by dialysis yields the purest silica sample.