989 resultados para SEQUENCE EVOLUTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-EfE-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing oeean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-E/E-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing ocean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Setúbal and São Vicente canyons are two major modern submarine canyons located in the southwest Iberian margin of Portugal. Although recognised as Pliocene to Quaternary features, their development during the Tertiary has not been fully understood up to date. A grid of 2D seismic data has been used to characterise the sedimentary deposits of the adjacent flanks to the submarine canyons. The relationship between the geological structure of the margin and the canyon's present location has been investigated. The interpretation of the main seismic units allowed the recognition of three generations of ravinements probably originated after middle Oligocene. Six units grouped in two distinctive seismic sequences have been identified and correlated with offshore stratigraphic data. Seismic Sequence 2 (SS2), the oldest, overlies Mesozoic and upper Eocene deformed units. Seismic Sequence I (SS1) is composed of four different seismic packages separated from SS2 by an erosional surface. The base of the studied sediment ridges is marked by an extensive erosional surface derived from a early/middle Oligocene relative sea-level fall. Deposition in the adjacent area to the actual canyons was reinitiated in late Oligocene in the form of transgressive and channel-fill deposits. A new depositional hiatus is recorded onshore during the Burdigalian, coincident with the unconformity separating SS1 and SS2. This can be correlated with the Arrábida unconformity and with the paroxysmal Burdigalian phase of the Betic domain. Presently, the Setúbal and São Vicente submarine canyons locally cut SS1 and SS2, forming distinctive channels from those recognised on the seismic data. On the upper shelf both dissect highly deformed areas subject to important erosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do European Master in Computational Logics, como requisito parcial para obtenção do grau de Mestre em Computational Logics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present a teaching-learning sequence on colour intended to a pre-service elementary teacher programme informed by History and Philosophy of Science. Working in a socio-constructivist framework, we made an excursion on the history of colour. Our excursion through history of colour, as well as the reported misconception on colour helps us to inform the constructions of the teaching-learning sequence. We apply a questionnaire both before and after each of the two cycles of action-research in order to assess students’ knowledge evolution on colour and to evaluate our teaching-learning sequence. Finally, we present a discussion on the persistence of deep-rooted alternative conceptions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Biologia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Differently from HIV-1, HIV-2 disease progression usually takes decades without antiretroviral therapy and the majority of HIV-2 infected individuals survive as elite controllers with normal CD4+ T cell counts and low or undetectable plasma viral load. Neutralizing antibodies (Nabs) are thought to play a central role in HIV-2 evolution and pathogenesis. However, the dynamic of the Nab response and resulting HIV-2 escape during acute infection and their impact in HIV-2 evolution and disease progression remain largely unknown. Our objective was to characterize the Nab response and the molecular and phenotypic evolution of HIV-2 in association with Nab escape in the first years of infection in two children infected at birth. Results: CD4+ T cells decreased from about 50% to below 30% in both children in the first five years of infection and the infecting R5 viruses were replaced by X4 viruses within the same period. With antiretroviral therapy, viral load in child 1 decreased to undetectable levels and CD4+ T cells recovered to normal levels, which have been sustained at least until the age of 12. In contrast, viral load increased in child 2 and she progressed to AIDS and death at age 9. Beginning in the first year of life, child 1 raised high titers of antibodies that neutralized primary R5 isolates more effectively than X4 isolates, both autologous and heterologous. Child 2 raised a weak X4-specific Nab response that decreased sharply as disease progressed. Rate of evolution, nucleotide and amino acid diversity, and positive selection, were significantly higher in the envelope of child 1 compared to child 2. Rates of R5-to-X4 tropism switch, of V1 and V3 sequence diversification, and of convergence of V3 to a β-hairpin structure were related with rate of escape from the neutralizing antibodies. Conclusion: Our data suggests that the molecular and phenotypic evolution of the human immunodeficiency virus type 2 envelope are related with the dynamics of the neutralizing antibody response providing further support for a model in which Nabs play an important role in HIV-2 pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Cancer/testis (CT) genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole. RESULTS: To shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes) genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes. CONCLUSION: Given their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An exceptional, tectonically remarkably unaffected, nearly 200 m-thick continuous section of hemipelagic and turbiditic sediments, covering most of the Triassic is described from the Batain Complex of north-eastern Oman. According to conodont and radiolarian data the sequence spans the late Scythian to the early Norian, a time period of nearly 30 M. Coupled with a high resolution stratigraphy, the lithostratigraphy, sedimentology, as well as sequence and isotope stratigraphy of the section are documented. For the Triassic of the Batain Plain we propose the new name Sal Formation, which replaces the formerly used Matbat Formation, and subdivide it into three new members. The Sal Formation was deposited on the proximal continental margin of northeastern Arabia and records various depositional environments. The lower member is interpreted as the distal part of a homoclinal ramp which evolves to a distally steepened ramp during time of deposition of the middle member. The upper member displays a toe of slope position which is indicated by an increase of proximal turbidites. These sediments form part of a segment of the Neo-Tethyan embayment between Arabia and India. The stratigraphic analysis indicates highly varying sedimentation rates from a minimum of 2 m/M gamma around the Anisian/Ladinian boundary up to 15 m/M gamma during the Lower and Upper Triassic. Sequence-stratigraphically, the Sal section is subdivided into six third order cycles which are biochronologically well integrated into the global Triassic cycle chart. The mixed siliciclastic-calcareous upper member of the Sal Formation typically shows highstand related carbonate shedding. It is, therefore, an important test case for sequence-stratigraphic controlled carbonate export to mixed basin fills. The well developed sequence stratigraphic cycles are mirrored in the isotope patterns. Additionally, the carbon and oxygen isotope data from the Sal Formation record the same chemostratigraphic marker at the Spathian/Anisian boundary known from other Tethyan sections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delta(3),Delta(2)-enoyl CoA isomerase (ECI) is an enzyme that participates in the degradation of unsaturated fatty acids through the beta-oxidation cycle. Three genes encoding Delta(3),Delta(2)-enoyl CoA isomerases and named AtECI1, AtECI2 and AtECI3 have been identified in Arabidopsis thaliana. When expressed heterologously in Saccharomyces cerevisiae, all three ECI proteins were targeted to the peroxisomes and enabled the yeast Deltaeci1 mutant to degrade 10Z-heptadecenoic acid, demonstrating Delta(3),Delta(2)-enoyl CoA isomerase activity in vivo. Fusion proteins between yellow fluorescent protein and AtECI1 or AtECI2 were targeted to the peroxisomes in onion epidermal cells and Arabidopsis root cells, but a similar fusion protein with AtECI3 remained in the cytosol for both tissues. AtECI3 targeting to peroxisomes in S. cerevisiae was dependent on yeast PEX5, while expression of Arabidopsis PEX5 in yeast failed to target AtECI3 to peroxisomes. AtECI2 and AtECI3 are tandem duplicated genes and show a high level of amino acid conservation, except at the C-terminus; AtECI2 ends with the well conserved peroxisome targeting signal 1 (PTS1) terminal tripeptide PKL, while AtECI3 possesses a divergent HNL terminal tripeptide. Evolutionary analysis of ECI genes in plants revealed several independent duplication events, with duplications occurring in rice and Medicago truncatula, generating homologues with divergent C-termini and no recognizable PTS1. All plant ECI genes analyzed, including AtECI3, are under negative purifying selection, implying functionality of the cytosolic AtECI3. Analysis of the mammalian and fungal genomes failed to identify cytosolic variants of the Delta(3),Delta(2)-enoyl CoA isomerase, indicating that evolution of cytosolic Delta(3),Delta(2)-enoyl CoA isomerases is restricted to the plant kingdom

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrocarbon distributions and stable isotope ratios of carbonates (delta(13)C(car), delta(18)O(car)), kerogen (delta(13)C(ker)), extractable organic matter (delta(13)C(EOM)) and individual hydrocarbons of Liassic black shale samples from a prograde metamorphic sequence in the Swiss Alps were used to identify the major organic reactions with increasing metamorphic grade. The studied samples range from the diagenetic zone (< 100 degrees C) to amphibolite facies (similar to 550 degrees C). The samples within the diagenetic zones (< 100 and 150 degrees C) are characterized by the dominance of C-< 20 n-alkanes, suggesting an origin related with marine and/or bacterial inputs. The metamorphic samples (200 to 550 degrees C) have distributions significantly dominated by C-12 and C-13 n-alkanes, C-14, C-16 and C-18 n-alkylcyclopentanes and to a lesser extend C-15, C-17 and C-21 n-alkylcyclohexanes. The progressive C-13-enrichment (up to 3.9 parts per thousand) with metamorphism of the C-> 17 n-alkanes suggests the occurrence of cracking reactions of high molecular weight compounds. The isotopically heavier (up to 5.6 parts per thousand) C-< 17 n-alkanes in metamorphic samples are likely originated by thermal degradation of long-chain homologous with preferential release of isotopically light C-1 and C-2 radicals. The dominance of specific even C-number n-alkylcyclopentanes suggests an origin related to direct cyclization mechanism (without decarboxylation step) of algal or bacterial fatty acids occurring in reducing aqueous metamorphic fluid conditions. The regular increase of the concentrations of n-alkylcycloalkanes vs. C-> 13 n-alkanes with metamorphism suggests progressive thermal release of kerogen-linked fatty acid precursors and degradation of n-alkanes. Changes of the steroid and terpenoid distributions are clearly related to increasing metamorphic temperatures. The absence of 18 alpha(H)-22,29,30-trisnorneohopane (Ts), the occurrence of 17 beta(H)-trisnorhopane, 17 beta(H), 21 alpha(H)-hopanes in the C-29 to C-31 range and 5 alpha(H),14 alpha(H),17 alpha(H)-20R C-27, C-29 steranes in the low diagenetic samples (< 100 degrees C) are characteristic of immature bitumens. The higher thermal stress within the upper diagenetic zone (150 degrees C) is marked by the presence of Ts, the disappearance of 17 beta(H)-trisnorhopane and thermodynamic equilibrium of the 22S/(22S + 22R) homohopane ratios. The increase of the alpha alpha alpha-sterane 20S/(20S + 20R) and 20R beta beta/(beta beta + alpha alpha) ratios (from 0.0 to 0.55 and from 0.0 to 0.40, respectively) in the upper diagenetic zone indicates the occurrence of isomerization reactions already at < 150 degrees C. However, the isomerization at C-20 (R -> S) reaches thermodynamic equilibrium values already at the upper diagenesis (similar to 150 degrees C) whereas the epimerisation at C-14 and C-17 (alpha alpha ->beta beta) arrives to constant values in the lower anchizone (similar to 200 degrees C). The ratios Ts vs. 17 alpha(H)-22,29,30-trisnorneohopane [(Ts/(Ts + Tm)] and 18 alpha(H)-30-norneohopane (C29Ts) vs. 17 alpha(H),21 beta(H)-30-norhopane [C29Ts/(C29Ts + C-29)] increase until the medium anchizone (200 to 250 degrees C) from 0.0 to 0.96 and from 0.0 to 0.44, respectively. An opposite trend owards lower values is observed in the higher metamorphic samples. The occurrence of specific hydrocarbons (e.g., n-alkylcyclopentanes, cadalene, hydrogenated aromatic compounds) in metamorphic samples points to kerogen degradation reactions most probably occurring in the presence of water and under reducing conditions. The changes of hydrocarbon distributions and carbon isotopic compositions of n-alkanes related to metamorphism suggest that the organic geochemistry may help to evaluate the lowest grades of prograde metamorphism. Copyright (c) 2005 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently two hypotheses have been proposed for the evolution of Leishmania involving respectively a Neotropical or Paleartic origin for the species. Here an alternative proposal on the phylogeny of Leishmania based on the major divisions within the genus is presented. In this hypothesis a Neotropic origin is retained for L. (Viannia) and Paraleishmania, a recently desribed section within the genus Leishmania, while an African origin is proposed for L. (Leishmania) and possibly Sauroleishmania. The current distribution of Leishmania in the Neotropics is explained as the product of multiple introductions of Leishmania parasites into the New World. Problems with organismal identity in Sauroleishmania and the use of molecular sequence data in inferring phylogenies are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins.