998 resultados para SEA-ICE
Resumo:
Previous versions of the Consortium for Small-scale Modelling (COSMO) numerical weather prediction model have used a constant sea-ice surface temperature, but observations show a high degree of variability on sub-daily timescales. To account for this, we have implemented a thermodynamic sea-ice module in COSMO and performed simulations at a resolution of 15 km and 5 km for the Laptev Sea area in April 2008. Temporal and spatial variability of surface and 2-m air temperature are verified by four automatic weather stations deployed along the edge of the western New Siberian polynya during the Transdrift XIII-2 expedition and by surface temperature charts derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. A remarkable agreement between the new model results and these observations demonstrates that the implemented sea-ice module can be applied for short-range simulations. Prescribing the polynya areas daily, our COSMO simulations provide a high-resolution and high-quality atmospheric data set for the Laptev Sea for the period 14-30 April 2008. Based on this data set, we derive a mean total sea-ice production rate of 0.53 km3/day for all Laptev Sea polynyas under the assumption that the polynyas are ice-free and a rate of 0.30 km3/day if a 10-cm-thin ice layer is assumed. Our results indicate that ice production in Laptev Sea polynyas has been overestimated in previous studies.
Resumo:
The polynyas of the Laptev Sea are regions of particular interest due to the strong formation of Arctic sea-ice. In order to simulate the polynya dynamics and to quantify ice production, we apply the Finite Element Sea-Ice Ocean Model FESOM. In previous simulations FESOM has been forced with daily atmospheric NCEP (National Centers for Environmental Prediction) 1. For the periods 1 April to 9 May 2008 and 1 January to 8 February 2009 we examine the impact of different forcing data: daily and 6-hourly NCEP reanalyses 1 (1.875° x 1.875°), 6-hourly NCEP reanalyses 2 (1.875° x 1.875°), 6-hourly analyses from the GME (Global Model of the German Weather Service) (0.5° x 0.5°) and high-resolution hourly COSMO (Consortium for Small-Scale Modeling) data (5 km x 5 km). In all FESOM simulations, except for those with 6-hourly and daily NCEP 1 data, the openings and closings of polynyas are simulated in principle agreement with satellite products. Over the fast-ice area the wind fields of all atmospheric data are similar and close to in situ measurements. Over the polynya areas, however, there are strong differences between the forcing data with respect to air temperature and turbulent heat flux. These differences have a strong impact on sea-ice production rates. Depending on the forcing fields polynya ice production ranges from 1.4 km3 to 7.8 km3 during 1 April to 9 May 2011 and from 25.7 km3 to 66.2 km3 during 1 January to 8 February 2009. Therefore, atmospheric forcing data with high spatial and temporal resolution which account for the presence of the polynyas are needed to reduce the uncertainty in quantifying ice production in polynyas.
Resumo:
A simple polynya flux model driven by standard atmospheric forcing is used to investigate the ice formation that took place during an exceptionally strong and consistent western New Siberian (WNS) polynya event in 2004 in the Laptev Sea. Whether formation rates are high enough to erode the stratification of the water column beneath is examined by adding the brine released during the 2004 polynya event to the average winter density stratification of the water body, preconditioned by summers with a cyclonic atmospheric forcing (comparatively weakly stratified water column). Beforehand, the model performance is tested through a simulation of a well‐documented event in April 2008. Neglecting the replenishment of water masses by advection into the polynya area, we find the probability for the occurrence of density‐driven convection down to the bottom to be low. Our findings can be explained by the distinct vertical density gradient that characterizes the area of the WNS polynya and the apparent lack of extreme events in the eastern Laptev Sea. The simple approach is expected to be sufficiently rigorous, since the simulated event is exceptionally strong and consistent, the ice production and salt rejection rates are likely to be overestimated, and the amount of salt rejected is distrusted over a comparatively weakly stratified water column. We conclude that the observed erosion of the halocline and formation of vertically mixed water layers during a WNS polynya event is therefore predominantly related to wind‐ and tidally driven turbulent mixing processes.
Resumo:
Sea-ice concentrations in the Laptev Sea simulated by the coupled North Atlantic-Arctic Ocean-Sea-Ice Model and Finite Element Sea-Ice Ocean Model are evaluated using sea-ice concentrations from Advanced Microwave Scanning Radiometer-Earth Observing System satellite data and a polynya classification method for winter 2007/08. While developed to simulate largescale sea-ice conditions, both models are analysed here in terms of polynya simulation. The main modification of both models in this study is the implementation of a landfast-ice mask. Simulated sea-ice fields from different model runs are compared with emphasis placed on the impact of this prescribed landfast-ice mask. We demonstrate that sea-ice models are not able to simulate flaw polynyas realistically when used without fast-ice description. Our investigations indicate that without landfast ice and with coarse horizontal resolution the models overestimate the fraction of open water in the polynya. This is not because a realistic polynya appears but due to a larger-scale reduction of ice concentrations and smoothed ice-concentration fields. After implementation of a landfast-ice mask, the polynya location is realistically simulated but the total open-water area is still overestimated in most cases. The study shows that the fast-ice parameterization is essential for model improvements. However, further improvements are necessary in order to progress from the simulation of large-scale features in the Arctic towards a more detailed simulation of smaller-scaled features (here polynyas) in an Arctic shelf sea.
Resumo:
The presence of melt ponds on the surface of Arctic sea ice significantly reduces its albedo, inducing a positive feedback leading to sea ice thinning. While the role of melt ponds in enhancing the summer melt of sea ice is well known, their impact on suppressing winter freezing of sea ice has, hitherto, received less attention. Melt ponds freeze by forming an ice lid at the upper surface, which insulates them from the atmosphere and traps pond water between the underlying sea ice and the ice lid. The pond water is a store of latent heat, which is released during refreezing. Until a pond freezes completely, there can be minimal ice growth at the base of the underlying sea ice. In this work, we present a model of the refreezing of a melt pond that includes the heat and salt balances in the ice lid, trapped pond, and underlying sea ice. The model uses a two-stream radiation model to account for radiative scattering at phase boundaries. Simulations and related sensitivity studies suggest that trapped pond water may survive for over a month. We focus on the role that pond salinity has on delaying the refreezing process and retarding basal sea ice growth. We estimate that for a typical sea ice pond coverage in autumn, excluding the impact of trapped ponds in models overestimates ice growth by up to 265 million km3, an overestimate of 26%.
Resumo:
The Arctic sea ice cover is thinning and retreating, causing changes in surface roughness that in turn modify the momentum flux from the atmosphere through the ice into the ocean. New model simulations comprising variable sea ice drag coefficients for both the air and water interface demonstrate that the heterogeneity in sea ice surface roughness significantly impacts the spatial distribution and trends of ocean surface stress during the last decades. Simulations with constant sea ice drag coefficients as used in most climate models show an increase in annual mean ocean surface stress (0.003 N/m2 per decade, 4.6%) due to the reduction of ice thickness leading to a weakening of the ice and accelerated ice drift. In contrast, with variable drag coefficients our simulations show annual mean ocean surface stress is declining at a rate of -0.002 N/m2 per decade (3.1%) over the period 1980-2013 because of a significant reduction in surface roughness associated with an increasingly thinner and younger sea ice cover. The effectiveness of sea ice in transferring momentum does not only depend on its resistive strength against the wind forcing but is also set by its top and bottom surface roughness varying with ice types and ice conditions. This reveals the need to account for sea ice surface roughness variations in climate simulations in order to correctly represent the implications of sea ice loss under global warming.
Resumo:
The study analyzes the sensitivity and memory of the Southern Hemisphere coupled climate system to increased Antarctic sea ice (ASI), taking into account the persistence of the sea ice maxima in the current climate. The mechanisms involved in restoring the climate balance under two sets of experiments, which differ in regard to their sea ice models, are discussed. The experiments are perturbed with extremes of ASI and integrated for 10 yr in a large 30-member ensemble. The results show that an ASI maximum is able to persist for ; 4 yr in the current climate, followed by a negative sea ice phase. The sea ice insulating effect during the positive phase reduces heat fluxes south of 60 8 S, while at the same time these are intensified at the sea ice edge. The increased air stability over the sea ice field strengthens the polar cell while the baroclinicity increases at midlatitudes. The mean sea level pressure is reduced (increased) over high latitudes (midlatitudes), typical of the southern annular mode (SAM) positive phase. The Southern Ocean (SO) becomes colder and fresher as the sea ice melts mainly through sea ice lateral melting, the consequence of which is an increase in the ocean stability by buoyancy and mixing changes. The climate sensitivity is triggered by the sea ice insulating process and the resulting freshwater pulse (fast response), while the climate equilibrium is restored by the heat stored in the SO subsurface layers (long response). It is concluded that the time needed for the ASI anomaly to be dissipated and/or melted is shortened by the sea ice dynamical processes.
Resumo:
Variability and trends in seasonal and interannual ice area export out of the Laptev Sea between 1992 and 2011 are investigated using satellite-based sea ice drift and concentration data. We found an average total winter (Octo- ber to May) ice area transport across the northern and east- ern Laptev Sea boundaries (NB and EB) of 3.48 × 10 5 km 2 . The average transport across the NB (2.87 × 10 5 km 2 ) is thereby higher than across the EB (0.61 × 10 5 km 2 ), with a less pronounced seasonal cycle. The total Laptev Sea ice area flux significantly increased over the last decades (0.85 × 10 5 km 2 decade − 1 , p> 0 . 95), dominated by increas- ing export through the EB (0.55 × 10 5 km 2 decade − 1 , p> 0 . 90), while the increase in export across the NB is smaller (0.3 × 10 5 km 2 decade − 1 ) and statistically not significant. The strong coupling between across-boundary SLP gradient and ice drift velocity indicates that monthly variations in ice area flux are primarily controlled by changes in geostrophic wind velocities, although the Laptev Sea ice circulation shows no clear relationship with large-scale atmospheric in- dices. Also there is no evidence of increasing wind velocities that could explain the overall positive trends in ice export. The increased transport rates are rather the consequence of a changing ice cover such as thinning and/or a decrease in con- centration. The use of a back-propagation method revealed that most of the ice that is incorporated into the Transpolar Drift is formed during freeze-up and originates from the cen- tral and western part of the Laptev Sea, while the exchange with the East Siberian Sea is dominated by ice coming from the central and southeastern Laptev Sea. Furthermore, our re- sults imply that years of high ice export in late winter (Febru- ary to May) have a thinning effect on the ice cover, which in turn preconditions the occurence of negative sea ice extent anomalies in summer.
Resumo:
The impact of extreme sea ice initial conditions on modelled climate is analysed for a fully coupled atmosphere ocean sea ice general circulation model, the Hadley Centre climate model HadCM3. A control run is chosen as reference experiment with greenhouse gas concentration fixed at preindustrial conditions. Sensitivity experiments show an almost complete recovery from total removal or strong increase of sea ice after four years. Thus, uncertainties in initial sea ice conditions seem to be unimportant for climate modelling on decadal or longer time scales. When the initial conditions of the ocean mixed layer were adjusted to ice-free conditions, a few substantial differences remained for more than 15 model years. But these differences are clearly smaller than the uncertainty of the HadCM3 run and all the other 19 IPCC fourth assessment report climate model preindustrial runs. It is an important task to improve climate models in simulating the past sea ice variability to enable them to make reliable projections for the 21st century.
Resumo:
The sea ice export from the Arctic is of global importance due to its fresh water which influences the oceanic stratification and, thus, the global thermohaline circulation. This study deals with the effect of cyclones on sea ice and sea ice transport in particular on the basis of observations from two field experiments FRAMZY 1999 and FRAMZY 2002 in April 1999 and March 2002 as well as on the basis of simulations with a numerical sea ice model. The simulations realised by a dynamic-thermodynamic sea ice model are forced with 6-hourly atmospheric ECMWF- analyses (European Centre for Medium-Range Weather Forecasts) and 6-hourly oceanic data of a MPI-OM-simulation (Max-Planck-Institute Ocean Model). Comparing the observed and simulated variability of the sea ice drift and of the position of the ice edge shows that the chosen configuration of the model is appropriate for the performed studies. The seven observed cyclones change the position of the ice edge up to 100 km and cause an extensive decrease of sea ice coverage by 2 % up to more than 10 %. The decrease is only simulated by the model if the ocean current is strongly divergent in the centre of the cyclone. The impact is remarkable of the ocean current on divergence and shear deformation of the ice drift. As shown by sensitivity studies the ocean current at a depth of 6 m – the sea ice model is forced with – is mainly responsible for the ascertained differences between simulation and observation. The simulated sea ice transport shows a strong variability on a time scale from hours to days. Local minima occur in the time series of the ice transport during periods with Fram Strait cyclones. These minima are not caused by the local effect of the cyclone’s wind field, but mainly by the large-scale pattern of surface pressure. A displacement of the areas of strongest cyclone activity in the Nordic Seas would considerably influence the ice transport.
Resumo:
Turbulent surface fluxes of momentum and sensible and latent heat as well as surface temperature, air temperature, air humidity, and wind speed were measured by the German Falcon research aircraft over the marginal ice zone (MIZ) of the northern Baltic Sea and the Fram Strait. Applying the bulk formulas and the stability functions to the measurements, the roughness lengths for momentum z0, sensible heat zT, and latent heat zq were calculated. As mean values over a wide range of sea ice conditions, we obtain z0 = 5 � 10�4 m, zT = 1 � 10�8 m, and zq = 1 � 10�7 m. These correspond to the following mean values (± standard deviations) of neutral transfer coefficients reduced to 10 m height, CDN10 = (1.9 ± 0.8) � 10�3, CHN10 = (0.9 ± 0.3) � 10�3, and CEN10 = (1.0 ± 0.2) � 10�3. An average ratio of z0/zT � 104 was observed over the range of 10�6 m < z0 < 10�2 m and differs from previously published results over compact sea ice (10�1 < z0/zT < 103). Other observational results over heterogeneous sea ice do not exist. However, our z0/zT ratio approximately agrees with observations over heterogeneous land surfaces. Flux parameterizations based on commonly used roughness lengths ratios (z0 = zT = zq) overestimate the surface heat fluxes compared to our measurements by more than 100%.
Resumo:
We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice–atmosphere and ice–ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice–ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities.
Resumo:
Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the “truth” disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.
Resumo:
This study is designed to compare the monthly continental snow cover and sea ice extent loss in the Arctic with regional atmospheric conditions including: mean sea level pressure, 925 hPa air temperature, and mean wind direction among others during the melt season (March-August) over the 29-year study period 1979-2007. Little research has gone into studying the concurrent variations in the annual loss of continental snow cover and sea ice extent across the land-ocean boundary, since these data are largely stored in incompatible formats. However, the analysis of these data, averaged spatially over three autonomous study regions located in Siberia, North America, and Western Russia, reveals a distinct difference in the response of snow and sea ice to the atmospheric forcing. On average, sea ice extent is lost earlier in the year, in May, than snow cover, in June, although Arctic sea ice is located farther north than continental snow in all three study regions. Once the loss of snow and ice extent begins, snow cover is completely removed sooner than sea ice extent, even though ice loss begins earlier in the melt season. Further, the analysis of the atmospheric conditions surrounding loss of snow and ice cover over the independent study regions indicates that conditions of cool temperatures with strong northeasterly winds in the later melt season months are effective at removing sea ice cover, likely through ice divergence, as are warmer temperatures via southerly winds directly forcing melt. The results of this study set the framework for further analysis of the direct influence of snow cover loss on later melt season sea ice extents and the predictability of snow and sea ice extent responses to modeled future climate conditions
Resumo:
This study examines the influence of Antarctic sea ice distribution on the large scale circulation of the Southern Hemisphere using a fully coupled GCM where the sea ice submodel is replaced by a climatology of observed extremes in sea ice concentration. Three 150-year simulations were completed for maximum, minimum and average sea ice concentrations and the results for the austral summer (January-March) were compared using the surface temperatures forced by the sea ice distributions as a filter for creating the composite differences. The results indicate that in the austral summer the polar cell expands (contracts) under minimum (maximum) sea ice conditions with corresponding shifts in the midlatitude Ferrell cell. We suggest that this response occurs because sea ice lies in the margin between the polar and midlatitude cells. The polarity of the Southern Hemisphere Annular (SAM) mode is also influenced such that when sea ice is at a minimum (maximum) the polarity of the SAM tends to be negative (positive).