859 resultados para SANDY BEACHES
Resumo:
Offshore and onshore buried pipelines under high operating temperature and pressures may lead to upheaval buckling (UHB) if sufficient soil cover is not present to prevent the upward movement of the pipeline. In regions where seasonal changes involve ground soil undergoing freezing-thawing cycles, the uplift resistance from soil cover may be minimum when the soil is undergoing thawing. This paper presents the results from 2 directly-comparable minidrum centrifuge tests conducted at the Schofield Centre, University of Cambridge, to investigate the difference in uplift resistance responses between fully-saturated and thawed sandy backfill conditions. Both tests were conducted drained at 30g using an 8.6 mm diameter aluminium model pipe, corresponding to a prototype pipe diameter of 258 mm. The soil cover/pipe diameter ratio, H/D, was kept at 1. Fraction E fine silica sand was used as the backfill. Preliminary experimental results indicated that the ultimate uplift resistance of a thawing sand backfill to be lower than that of a fully saturated sand backfill. This suggests that in regions where backfill soil undergoes freeze-thaw cycles, the thawing backfill may be more critical than fully saturated backfill for uplift resistance. The 2-dimensional displacement field during the experiment was accurately measured and analysed using the Particle Image Velocimetry technique. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
One of the most important marine ecologic phenomenon , is the study of animal community among the bed or benthic fauna. Macrobenthoses are the graet part of the benthic faune , that are more biomasses than meiofauna and microfauna. To study polychaetes diversity of Mangroves, located in Khoore-Khooran , sampling was conducted on a bimonthly and carried out from December 2001 to October 2002. Bottom samples were collected by Van Veen grab (0.025 m2)at 6 station from 2 transect Insitu measurement of temperature , pH , Do and salinity were done . Atotal of polychaetes werw identified within study 32 Family and 43 Genus . Cirriphormia and Nephtys were the most dominant genus in the studies . The range fomumerical abundance of polychaets was between 3006 per m2 in the station A3 to 559individual per mein the station A1 and the variation was done to different bottom , texture the variable environment conditions govrtneng the different parts of each creeks as well as within creeks . Application of diversity indices (Shannon H') on the dominant polychates assambladges has higher H' in the Azar and lower 1-1/ in the Mehr . and the stations B3 has the highest H' and the station A2 has the lowest H' Application of diversity and Richness, Evennes were studied and showed that the station A3 has the lowest evenness and the most individual , and station A1 has the middle pollution.
Resumo:
Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation. © 2013 AIP Publishing LLC.
Resumo:
IEECAS SKLLQG
Resumo:
River training walls have been built at scores of locations along the NSW coast and their impacts on shoreline change are still not fully understood. In this study, the Brunswick River entrance and adjacent beaches are selected for examination of the impact of the construction of major training walls. Thirteen sets of aerial photographs taken between 1947 and 1994 are used in a CIS approach to accurately determine tire shoreline Position, beach contours and sand volumes, and their changes in both time and space, and then to assess the contribution of both tire structures and natural hydrodynamic conditions to large scale (years-decades and kilometres) beach changes. The impact of the training walls can be divided into four stages: natural conditions prior to their construction (pre 1959), major downdrift erosion and updrift accretion during and. following the construction of the walls in 1959 similar to 1962 and 1966. diminishing impact of the walls between 1966 and 1987, and finally no apparent impact between 1987 similar to 1994. The impact extends horizontally about 8 km updrift and 17 km downdrift, and temporally up to 25 years..
Resumo:
Gemstone Team Saving Testudo