984 resultados para SALT STRESS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salinity acts to inhibit plant access to soil water by increasing the osmotic strength of the soil solution. As the soil dries, the soil solution becomes increasingly concentrated, further limiting plant access to soil water. An experiment was conducted to examine the effect of salt on plant available water in a heavy clay soil, using a relatively salt tolerant species, wheat ‘Kennedy’, and a more salt sensitive species, chickpea ‘Jimbour’. Sodium chloride was applied to Red Ferrosol at 10 rates from 0 to 3 g/kg. Plants were initially maintained at field capacity. After 3 weeks, plants had become established and watering was ceased. The plants then grew using the water stored in the soil. Once permanent wilting point was reached plants were harvested, and soil water content was measured. The results showed that without salt stress, wheat and chickpea extracted approximately the same amount of water. However, as the salt concentration increased, the ability of chickpea to extract water was severely impaired, while wheat’s ability to extract water was not affected over the range of concentrations examined. Growth of both wheat and chickpea was reduced even from low salt concentrations. Possible explanations for this are that the effect on growth is due to Cl- toxicity and that this occurs at lower concentrations than the osmotic effect of salinity, or that the metabolic demands of maintaining plant water balance and extracting soil water under saline conditions result in reduced growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Highly mobile top predators are hypothesized to spatially and/or temporally link disparate habitats through the combination of their movement and feeding patterns, but recent studies suggest that individual specialization in habitat use and feeding could keep habitats compartmentalized. 2.  We used passive acoustic telemetry and stable isotope analysis to investigate whether specialization in movement and feeding patterns of American alligators (Alligator mississippiensis) in an oligotrophic subtropical estuary created habitat linkages between marine and estuarine/freshwater food webs. 3.  Individual alligators adopted one of the three relatively distinct movement tactics that were linked to variation in diets. Fifty-six per cent of alligators regularly travelled from the upstream (freshwater/mid-estuary) areas into the downstream (marine-influenced) areas where salinities exceed those typically tolerated by alligators. Thirty-one per cent of the alligators made regular trips from the mid-estuarine habitat into the upstream habitat; 13% remained in the mid-estuary zone year-round. 4.  Stable isotopic analysis indicated that, unlike individuals remaining in the mid-estuary and upstream zones, alligators that used the downstream zone fed at least partially from marine food webs and likely moved to access higher prey abundance at the expense of salt stress. Therefore, ‘commuting’ alligators may link marine food webs with those of the estuary and marshes in the coastal Everglades and create an upstream vector for allochthonous nutrient inputs into the estuary. 5.  This study lends further support to the hypothesis that large-bodied highly mobile predators faced with trade-offs are likely to exhibit individual specialization leading to habitat linkages, rather than compartmentalization. However, the conditions under which this scenario occurs require further investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of fossil fuels has been considered one of reason for the increase of pollution in the atmosphere and it may be related to the climate changes. Then, the research of the new sources of fuels will be important. Considering this, the use of biodiesel has been considered not as bad as petrol. The castor bean (Ricinus communis L.) is an important oilseed, which belongs to Euphorbiaceae family, and the oil found in the seed has important characteristics for biodiesel. This plant is considered as “rustic” as it does not need so much water for its development and oil production. Due to this, this plant has been considered to be ideal in semi-arid regions, such as the Northeast of Brazil. The aim of his study is to better understand the responses to abiotic stresses (drought and salinity) from castor bean plants using morphological, physiological and molecular tools. In order to do this, the castor bean plants were subjected to salt stress (50, 100, 150 and 200 mM NaCl) in a controlled environment and drought stress (5, 10, 15 days and 10 days cyclic). After these treatments, these plants were subjected to different analyzes: a) the expansion and retention of water from leaves; b) anatomy using leaves and roots. Based on these results, we found that castor suffered decrease in leaf area with increase drought stress, however restricted water loss, probably by accumulation of compatible solutes in the leaves. The anatomy data showed modifications in the vascular system. These modifications observed suggested that castor bean plant may be resistant to stress as it was verified in 5 days of drought as well as in 100 mM NaCl. In both conditions, these plants were fine. Probably these plants keep some solutes in the cell and then maintain the cell tugor. The data obtained in this study gave a better idea how castor bean plant responds to abiotic stress conditions - drought and salt stress

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water used for irrigation in semiarid regions of the world is not always of good quality, and may contain salts levels that inhibit plants growth. This study was conducted to evaluate the growth of papaya ( Carica papaya L.) ‘Golden’ seedlings irrigated with saline water in soil with and without bovine biofertilizer produced by anaerobic fermentation of a mixture of fresh bovine manure and water. The experiment was carried out in Areia County, Paraiba State, Brazil. Treatments were distributed in randomized blocks using a factorial design 5 × 2 relative to five salinity levels in irrigation water of 0.5, 1.0, 2.0, 3.0 and 4.0 dS m-1 in soil with and without bovine biofertilizer, corresponding to 10% of the substrate volume. At 90 d after emergence (DAE), both the electrical conductivity (EC) in soil saturation extract, biometric growth and DM production of papaya seedlings were evaluated. Increased salinity from 0.5 to 4.0 dS m-1 raised, within 90 DAE, soil EC of saturation extract (ECse) from 1.19 to 3.95 dS m-1 and from 1.23 to 3.63 dS m-1 in treatments with and without bovine biofertilizer, respectively. Also, the increase in water salinity from 0.5 dS m-1 to the estimated maximum values ranging from 1.46 to 2.13 dS m-1 stimulated seedling height to 11.42 and 18.72 cm in soil with and without bovine biofertilizer, respectively. Higher salinity levels in irrigation water increased soil salinity levels to values that inhibited both growth and quality of papaya seedlings, but with less severity when treated with bovine biofertilizer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The screening for genes in metagenomic libraries from soil creates opportunities to explore the enormous genetic and metabolic diversity of microorganisms. Rivers are ecosystems with high biological diversity, but few were examined using the metagenomic approach. With this objective, a metagenomic library was constructed from DNA soil samples collected at three different points along the Jundiaí-river (Rio Grande do Norte-Brazil). The points sampled are from open area, rough terrain and with the direct incidence of sunlight. This library was analyzed functionally and based in sequence. For functional analysis Luria-Bertani solid medium (LB) with NaCl concentration varied from 0.17M to 0.85M was used for functional analysis. Positives clones resistant to hypersaline medium were obtained. The recombinant DNAs were extracted and transformed into Escherichia coli strain DH10B and survival curves were obtained for quantification of abiotic stress resistance. The sequences of clones were obtained and submitted to the BLASTX tool. Some clones were found to hypothetical proteins of microorganisms from both Archaea and Bacteria division. One of the clones showed a complete ORF with high similarity to glucose-6-phosphate isomerase which participates in the synthesis of glycerol pathway and serves as a compatible solute to balance the osmotic pressure inside and outside of cells. Subsequently, in order to identify genes encoding osmolytes or enzymes related halotolerance, environmental DNA samples from the river soil, from the water column of the estuary and ocean were collected and pyrosequenced. Sequences of osmolytes and enzymes of different microorganisms were obtained from the UniProt and used as RefSeqs for homology identification (TBLASTN) in metagenomic databases. The sequences were submitted to HMMER for the functional domains identification. Some enzymes were identified: alpha-trehalose-phosphate synthase, L-ectoina synthase (EctC), transaminase L-2 ,4-diaminobutyric acid (EctB), L-2 ,4-diaminobutyric acetyltransferase (EctA), L-threonine 3 dehydrogenase (sorbitol pathway), glycerol-3-phosphate dehydrogenase, inositol 3-phosphate dehydrogenase, chaperones, L-proline, glycine betaine binding ABC transporter, myo-inositol-1-phosphate synthase protein of proline simportadora / PutP sodium-and trehalose-6-phosphate phosphatase These proteins are commonly related to saline environments, however the identification of them in river environment is justified by the high salt concentration in the soil during prolonged dry seasons this river. Regarding the richness of the microbiota the river substrate has an abundance of halobacteria similar to the sea and more than the estuary. These data confirm the existence of a specialized response against salt stress by microorganisms in the environment of the Jundiaí river

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study evaluated the physiological responses of matrinxa, Brycon cephalus (Gunther), submitted to transport stress under the influence of sodium chloride, Different salt concentrations (0.0%, 0.1%, 0.3% and 0.6%) were added to four 200-L plastic tanks. Each tank was stocked with 30 fish (mean weight 1.0 +/- 0.2 kg) and transported for 4 h. Blood was sampled prior to transport and immediately after and 24 and 96 h after transport. Plasma cortisol and glucose and serum sodium and potassium, plasma chloride and ammonia were analysed, Changes in plasma cortisol were observed immediately after transportation, except in fish transported in 0.3% and 0.6% salt. Twenty-four hours later, this hormone had returned to its initial level in all fish. Blood glucose was not changed in fish treated with 0.6% salt immediately after transport, and returned to the initial level within 96 h after the other treatments. All treatments resulted in lower levels of plasma chloride after transport, except for fish treated with 0.6% salt, with fish treated with 0.0% and 0.3% salt recovering 24 h later, Serum sodium decreased immediately after transport only in the control fish, returning to the initial level 24 h later, the results indicate that treatment with 0.6% NaCl reduces most of the physiological responses of matrinxa to the stress of transport.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. Methodology/Principal Findings: In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. Conclusions/Significance: The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO2 concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study evaluated the physiological responses of matrinxa, Brycon cephalus (Gunther), submitted to transport stress under the influence of sodium chloride, Different salt concentrations (0.0%, 0.1%, 0.3% and 0.6%) were added to four 200-L plastic tanks. Each tank was stocked with 30 fish (mean weight 1.0 +/- 0.2 kg) and transported for 4 h. Blood was sampled prior to transport and immediately after and 24 and 96 h after transport. Plasma cortisol and glucose and serum sodium and potassium, plasma chloride and ammonia were analysed, Changes in plasma cortisol were observed immediately after transportation, except in fish transported in 0.3% and 0.6% salt. Twenty-four hours later, this hormone had returned to its initial level in all fish. Blood glucose was not changed in fish treated with 0.6% salt immediately after transport, and returned to the initial level within 96 h after the other treatments. All treatments resulted in lower levels of plasma chloride after transport, except for fish treated with 0.6% salt, with fish treated with 0.0% and 0.3% salt recovering 24 h later, Serum sodium decreased immediately after transport only in the control fish, returning to the initial level 24 h later, the results indicate that treatment with 0.6% NaCl reduces most of the physiological responses of matrinxa to the stress of transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncoupling protein one (UCP1) is a mitochondrial inner membrane protein capable of uncoupling the electrochemical gradient from adenosine-5'-triphosphate (ATP) synthesis, dissipating energy as heat. UCP1 plays a central role in nonshivering thermogenesis in the brown adipose tissue (BAT) of hibernating animals and small rodents. A UCP1 ortholog also occurs in plants, and aside from its role in uncoupling respiration from ATP synthesis, thereby wasting energy, it plays a beneficial role in the plant response to several abiotic stresses, possibly by decreasing the production of reactive oxygen species (ROS) and regulating cellular redox homeostasis. However, the molecular mechanisms by which UCP1 is associated with stress tolerance remain unknown. Here, we report that the overexpression of UCP1 increases mitochondrial biogenesis, increases the uncoupled respiration of isolated mitochondria, and decreases cellular ATP concentration. We observed that the overexpression of UCP1 alters mitochondrial bioenergetics and modulates mitochondrial-nuclear communication, inducing the upregulation of hundreds of nuclear- and mitochondrial-encoded mitochondrial proteins. Electron microscopy analysis showed that these metabolic changes were associated with alterations in mitochondrial number, area and morphology. Surprisingly, UCP1 overexpression also induces the upregulation of hundreds of stress-responsive genes, including some involved in the antioxidant defense system, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). As a consequence of the increased UCP1 activity and increased expression of oxidative stress-responsive genes, the UCP1-overexpressing plants showed reduced ROS accumulation. These beneficial metabolic effects may be responsible for the better performance of UCP1-overexpressing lines in low pH, high salt, high osmolarity, low temperature, and oxidative stress conditions. Overexpression of UCP1 in the mitochondrial inner membrane induced increased uncoupling respiration, decreased ROS accumulation under abiotic stresses, and diminished cellular ATP content. These events may have triggered the expression of mitochondrial and stress-responsive genes in a coordinated manner. Because these metabolic alterations did not impair plant growth and development, UCP1 overexpression can potentially be used to create crops better adapted to abiotic stress conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lentil is a self-pollinating diploid (2n = 14 chromosomes) annual cool season legume crop that is produced throughout the world and is highly valued as a high protein food. Several abiotic stresses are important to lentil yields world wide and include drought, heat, salt susceptibility and iron deficiency. The biotic stresses are numerous and include: susceptibility to Ascochyta blight, caused by Ascochyta lentis; Anthracnose, caused by Colletotrichum truncatum; Fusarium wilt, caused by Fusarium oxysporum; Sclerotinia white mold, caused by Sclerotinia sclerotiorum; rust, caused by Uromyces fabae; and numerous aphid transmitted viruses. Lentil is also highly susceptible to several species of Orabanche prevalent in the Mediterranean region, for which there does not appear to be much resistance in the germplasm. Plant breeders and geneticists have addressed these stresses by identifying resistant/tolerant germplasm, determining the genetics involved and the genetic map positions of the resistant genes. To this end progress has been made in mapping the lentil genome and several genetic maps are available that eventually will lead to the development of a consensus map for lentil. Marker density has been limited in the published genetic maps and there is a distinct lack of co-dominant markers that would facilitate comparisons of the available genetic maps and efficient identification of markers closely linked to genes of interest. Molecular breeding of lentil for disease resistance genes using marker assisted selection, particularly for resistance to Ascochyta blight and Anthracnose, is underway in Australia and Canada and promising results have been obtained. Comparative genomics and synteny analyses with closely related legumes promises to further advance the knowledge of the lentil genome and provide lentil breeders with additional genes and selectable markers for use in marker assisted selection. Genomic tools such as macro and micro arrays, reverse genetics and genetic transformation are emerging technologies that may eventually be available for use in lentil crop improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of studies conducted in humans and in animals have observed that events occurring early in life are associated with the development of diseases in adulthood. Salt overload and restriction during pregnancy and lactation are responsible for functional (hemodynamic and hormonal) and structural alterations in adult offspring. Our group observed that lower birth weight and insulin resistance in adulthood is associated with salt restriction during pregnancy On the other hand, perinatal salt overload is associated with higher blood pressure and higher renal angiotensin II content in adult offspring. Therefore, we hypothesised that renin-angiotensin system (RAS) function is altered by changes in sodium intake during pregnancy. Such changes may influence fetoplacental blood flow and thereby fetal nutrient supply, with effects on growth in utero and, consequently, on birth weight. Female Wistar rats were fed low-salt (LS), normal-salt (NS), or high-salt (HS) diet, starting before conception and continuing until day 19 of pregnancy, Blood pressure, heart rate, fetuses and dams` body weight, placentae weight and litter size were measured on day 19 of pregnancy. Cardiac output, uterine and placental blood flow were also determined on day 19. Expressions of renin-angiotensin system components and of the TNF-alpha gene were evaluated in the placentae. Plasma renin activity (PRA) and plasma and tissue angiotensin-converting enzyme (ACE) activity, as well as plasma and placental levels of angiotensins I, II, and 1-7 were measured. Body weight and kidney mass were greater in HS than in NS and LS dams. Food intake did not differ among the maternal groups. Placental weight was lower in LS dams than in NS and HS dams. Fetal weight was lower in the US group than in the NS and HS groups. The PRA was greater in IS dams than in NS and HS dams, although ACE activity (serum, cardiac, renal, and placental) was unaffected by the level of sodium intake. Placental levels of angiotensins I and II were lower in the HS group than in the ISIS and IS groups. Placental angiotensin receptor type 1 (AT(1)) gene expression and levels of thiobarbituric acid reactive substances (TBARS) were higher in HS dams, as were uterine blood flow and cardiac output. The degree of salt intake did not influence plasma sodium, potassium or creatinine. Although fractional sodium excretion was higher in HS dams than in NS and LS dams, fractional potassium excretion was unchanged. In conclusion, findings from this study indicate that the reduction in fetal weight in response to salt restriction during pregnancy does not involve alterations in uterine-placental perfusion or the RAS. Moreover, no change in fetal weight is observed in response to salt overload during pregnancy. However, salt overload did lead to an increase in placental weight and uterine blood flow associated with alterations in maternal plasma and placental RAS. Therefore, these findings indicate that changes in salt intake during pregnancy lead to alterations in uterine-placental perfusion and fetal growth. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is predicted that dryland salinity will affect up to 17 Mha of the Australian landscape by 2050, and therefore, monitoring the health of tree plantings and remnant native vegetation in saline areas is increasingly important. Casuarina glauca Sieber ex Spreng. has considerable salinity tolerance and is commonly planted in areas with a shallow, saline water table. To evaluate the potential of using the nitrogenous composition of xylem sap to assess salinity stress in C. glauca, the responses of trees grown with various soil salinities in a greenhouse were compared with those of trees growing in field plots with different water table depths and groundwater salinities. In the greenhouse, increasing soil salinity led to increased allocation of nitrogen (N) to proline and arginine in both stem and root xylem sap, with coincident decreases in citrulline and asparagine. Although the field plots were ranked as increasingly saline-based on ground water salinity and depth-only the allocation of N to citrulline differed significantly between the field plots. Within each plot, temporal variation in the composition of the xylem sap was related to rainfall, rainfall infiltration and soil salinity. Periods of low rainfall and infiltration and higher soil salinity corresponded with increased allocation of N to proline and arginine in the xylem sap. The allocation of N to citrulline and asparagine increased following rainfall events where rain was calculated to have infiltrated sufficiently to decrease soil salinity. The relationship between nitrogenous composition of the xylem sap of C. glauca and soil salinity indicates that the analysis of xylem sap is an effective method for assessing changes in salinity stress in trees at a particular site over time. However, the composition of the xylem sap proved less useful as a comparative index of salinity stress in trees growing at different sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Nitrosative stress takes place in endothelial cells (EC) during corneal acute graft rejection. The purpose of this study was to evaluate the potential role of peroxynitrite on corneal EC death. METHODS: The effect of peroxynitrite was evaluated in vivo. Fifty, 250, and 500 microM in 1.5 microL of the natural or denatured peroxynitrite in 50 microM NaOH, 50 microM NaOH alone, or balanced salt solution were injected into the anterior chamber of rat eyes (n=3/group). Corneal toxic signs after injection were assessed by slit-lamp, in vivo confocal imaging, pachymetry, and EC count. The effect of peroxynitrite was also evaluated on nitrotyrosine and leucocyte elastase inhibitor/LDNase II immunohistochemistry. Human corneas were incubated with peroxynitrite and the effect on EC viability was evaluated. A specific inducible nitric oxide synthase inhibitor (iNOS) was administered systemically in rats undergoing allogeneic corneal graft rejection and the effect on EC was evaluated by EC count. RESULTS: Rat eyes receiving as little as 50 microM peroxynitrite showed a specific dose-dependent toxicity on EC. We observed an intense nitrotyrosine staining of human and rat EC exposed to peroxynitrite associated with leucocyte elastase inhibitor nuclear translocation, a noncaspase dependent apoptosis reaction. Specific inhibition of iNOS generation prevented EC death and enhanced EC survival of the grafted corneas. However, inhibition of iNOS did not have a significant influence on the incidence of graft rejection. CONCLUSION: Nitrosative stress during acute corneal graft rejection in rat eyes induces a noncaspase dependent apoptotic death in EC. Inhibition of nitric oxide production during the corneal graft rejection has protective effects on the corneal EC survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active protein-disaggregation by a chaperone network composed of ClpB and DnaK + DnaJ + GrpE is essential for the recovery of stress-induced protein aggregates in vitro and in Escherichia coli cells. K-glutamate and glycine-betaine (betaine) naturally accumulate in salt-stressed cells. In addition to providing thermo-protection to native proteins, we found that these osmolytes can strongly and specifically activate ClpB, resulting in an increased efficiency of chaperone-mediated protein disaggregation. Moreover, factors that inhibited the chaperone network by impairing the stability of the ClpB oligomer, such as natural polyamines, dilution, or high salt, were efficiently counteracted by K-glutamate or betaine. The combined protective, counter-negative and net activatory effects of K-glutamate and betaine, allowed protein disaggregation and refolding under heat-shock temperatures that otherwise cause protein aggregation in vitro and in the cell. Mesophilic organisms may thus benefit from a thermotolerant osmolyte-activated chaperone mechanism that can actively rescue protein aggregates, correctly refold and maintain them in a native state under heat-shock conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The term water stress refers to the effects of low water availability on microbial growth and physiology. Water availability has been proposed as a major constraint for the use of microorganisms in contaminated sites with the purpose of bioremediation. Sphingomonas wittichii RW1 is a bacterium capable of degrading the xenobiotic compounds dibenzofuran and dibenzo-p-dioxin, and has potential to be used for targeted bioremediation. The aim of the current work was to identify genes implicated in water stress in RW1 by means of transposon mutagenesis and mutant growth experiments. Conditions of low water potential were mimicked by adding NaCl to the growth media. Three different mutant selection or separation method were tested which, however recovered different mutants. Recovered transposon mutants with poorer growth under salt-induced water stress carried insertions in genes involved in proline and glutamate biosynthesis, and further in a gene putatively involved in aromatic compound catabolism. Transposon mutants growing poorer on medium with lowered water potential also included ones that had insertions in genes involved in more general functions such as transcriptional regulation, elongation factor, cell division protein, RNA polymerase β or an aconitase.