905 resultados para Running Kinematics
Resumo:
In human and animal running spring-like leg behavior is found, and similar concepts have been demonstrated by various robotic systems in the past. In general, a spring-mass model provides self-stabilizing characteristics against external perturbations originated in leg-ground interactions and motor control. Although most of these systems made use of linear spring-like legs. The question addressed in this paper is the influence of leg segmentation (i.e. the use of rotational joint and two limb-segments) to the self-stability of running, as it appears to be a common design principle in nature. This paper shows that, with the leg segmentation, the system is able to perform self-stable running behavior in significantly broader ranges of running speed and control parameters (e.g. control of angle of attack at touchdown, and adjustment of spring stiffness) by exploiting a nonlinear relationship between leg force and leg compression. The concept is investigated by using a two-segment leg model and a robotic platform, which demonstrate the plausibility in the real world. ©2008 IEEE.
Resumo:
It has long been the dream to build robots which could walk and run with ease. To date, the stance phase of walking robots has been characterized by the use of either straight, rigid legs, as is the case of passive walkers, or by the use of articulated, kinematically-driven legs. In contrast, the design of most hopping or running robots is based on compliant legs which exhibit quite natural behavior during locomotion. © 2006 Springer.
Resumo:
Exploiting the body dynamics to control the behavior of robots is one of the most challenging issues, because the use of body dynamics has a significant potential in order to enhance both complexity of the robot design and the speed of movement. In this paper, we explore the control strategy of rapid four-legged locomotion by exploiting the intrinsic body dynamics. Based on the fact that a simple model of four-legged robot is known to exhibit interesting locomotion behavior, this paper analyzes the characteristics of the dynamic locomotion for the purpose of the locomotion control. The results from a series of running experiments with a robot show that, by exploiting the unique characteristics induced by the body dynamics, the forward velocity can be controlled by using a very simple method, in which only one control parameter is required. Furthermore it is also shown that a few of such different control parameters exist, each of them can control the forward velocity. Interestingly, with these parameters, the robot exhibits qualitatively different behavior during the locomotion, which could lead to our comprehensive understanding toward the behavioral diversity of adaptive robotic systems. © 2005 IEEE.
Resumo:
A total of six stations in the Han River system were selected for establishing polyurethane foam units (PFUs) to collect protozoans, including phytomastigophorans, zoomastigophorans, amoebas and ciliates, in July 1993. In the bioassessment of microbial communities using the PFUs, the number of species decreased as pollution intensity increased. The diversity index values calculated at the main stations generally agreed with the pollution status of the stations. Anyang-Chon (Chon means stream) showed the lowest diversity value (1.89), and all stations, except Masok and Anyang-Chon, showed diversity index values ranging from 3.15 to 3.93. The highest heterotrophic index (HI) value was detected in Anyang-Chon followed by Masok-Chon. The number of species at the main stations reached a maximum on day 11 of being exposed to PFUs. The results of S-eq, G and T-90% all suggest that bioassessments using the PFU system were well matched with pollution status of the water. All microbial variables were significantly correlated with comprehensive chemical pollution indices, P-a and P-b, with correlation coefficients ranging from r=0.87 to r=0.96.
Resumo:
Many business processes in enterprise applications are both long running and transactional in nature. However, no current transaction model can provide full transaction support for such long running business processes. This paper proposes a new transaction model, the pessimistic predicate/transform (PP/T) model, which can provide full transaction support for long running business processes. A framework was proposed on the enterprise JavaBeans platform to implement the PP/T model. The framework enables application developers to focus on the business logic, with the underlying platform providing the required transactional semantics. The development and maintenance effort are therefore greatly reduced. Simulations show that the model has a sound concurrency management ability for long running business processes.