890 resultados para Rough sets
Resumo:
Let O be a monomial curve in the affine algebraic e-space over a field K and P be the relation ideal of O. If O is defined by a sequence of e positive integers some e - 1 of which form an arithmetic sequence then we construct a minimal set of generators for P and write an explicit formula for mu(P).
Resumo:
We have developed a theory for an electrochemical way of measuring the statistical properties of a nonfractally rough electrode. We obtained the expression for the current transient on a rough electrode which shows three times regions: short and long time limits and the transition region between them. The expressions for these time ranges are exploited to extract morphological information about the surface roughness. In the short and long time regimes, we extract information regarding various morphological features like the roughness factor, average roughness, curvature, correlation length, dimensionality of roughness, and polynomial approximation for the correlation function. The formulas for the surface structure factors (the measure of surface roughness) of rough surfaces in terms of measured reversible and diffusion-limited current transients are also obtained. Finally, we explore the feasibility of making such measurements.
Resumo:
We derive boundary conditions at a rigid wall for a granular material comprising rough, inelastic particles. Our analysis is confined to the rapid flow, or granular gas, regime in which grains interact by impulsive collisions. We use the Chapman-Enskog expansion in the kinetic theory of dense gases, extended for inelastic and rough particles, to determine the relevant fluxes to the wall. As in previous studies, we assume that the particles are spheres, and that the wall is corrugated by hemispheres rigidly attached to it. Collisions between the particles and the wall hemispheres are characterized by coefficients of restitution and roughness. We derive boundary conditions for the two limiting cases of nearly smooth and nearly perfectly rough spheres, as a hydrodynamic description of granular gases comprising rough spheres is appropriate only in these limits. The results are illustrated by applying the equations of motion and boundary conditions to the problem of plane Couette flow.
Resumo:
By using the method of characteristics, the bearing capacity factor N-gamma was computed for a rough strip footing. The analysis was performed by considering a curved nonplastic wedge under the foundation base bounded by curved slip lines being tangential to the base of the footing at its either edge and inclined at an angle pi/4 - phi/2 with the vertical axis of symmetry. The existing theories in the literature for rough footings, which usually employ a triangular wedge below the footing base, were generally found to provide greater values of N-gamma as compared with the results obtained in this contribution.
Resumo:
Support Vector Clustering has gained reasonable attention from the researchers in exploratory data analysis due to firm theoretical foundation in statistical learning theory. Hard Partitioning of the data set achieved by support vector clustering may not be acceptable in real world scenarios. Rough Support Vector Clustering is an extension of Support Vector Clustering to attain a soft partitioning of the data set. But the Quadratic Programming Problem involved in Rough Support Vector Clustering makes it computationally expensive to handle large datasets. In this paper, we propose Rough Core Vector Clustering algorithm which is a computationally efficient realization of Rough Support Vector Clustering. Here Rough Support Vector Clustering problem is formulated using an approximate Minimum Enclosing Ball problem and is solved using an approximate Minimum Enclosing Ball finding algorithm. Experiments done with several Large Multi class datasets such as Forest cover type, and other Multi class datasets taken from LIBSVM page shows that the proposed strategy is efficient, finds meaningful soft cluster abstractions which provide a superior generalization performance than the SVM classifier.
Resumo:
The diversity order and coding gain are crucial for the performance of a multiple antenna communication system. It is known that space-time trellis codes (STTC) can be used to achieve these objectives. In particular, we can use STTCs to obtain large coding gains. Many attempts have been made to construct STTCs which achieve full-diversity and good coding gains, though a general method of construction does not exist. Delay diversity code (rate-1) is known to achieve full-diversity, for any number of transmit antennas and any signal set, but does not give a good coding gain. A product distance code based delay diversity scheme (Tarokh, V. et al., IEEE Trans. Inform. Theory, vol.44, p.744-65, 1998) enables one to improve the coding gain and construct STTCs for any given number of states using coding in conjunction with delay diversity; it was stated as an open problem. We achieve such a construction. We assume a shift register based model to construct an STTC for any state complexity. We derive a sufficient condition for this STTC to achieve full-diversity, based on the delay diversity scheme. This condition provides a framework to do coding in conjunction with delay diversity for any signal constellation. Using this condition, we provide a formal rate-1 STTC construction scheme for PSK signal sets, for any number of transmit antennas and any given number of states, which achieves full-diversity and gives a good coding gain.
Resumo:
Proving the unsatisfiability of propositional Boolean formulas has applications in a wide range of fields. Minimal Unsatisfiable Sets (MUS) are signatures of the property of unsatisfiability in formulas and our understanding of these signatures can be very helpful in answering various algorithmic and structural questions relating to unsatisfiability. In this paper, we explore some combinatorial properties of MUS and use them to devise a classification scheme for MUS. We also derive bounds on the sizes of MUS in Horn, 2-SAT and 3-SAT formulas.
Resumo:
Nano-indentation is a technique used to measure various mechanical properties like hardness, Young's modulus and the adherence of thin films and surface layers. It can be used as a quality control tool for various surface modification techniques like ion-implantation, film deposition processes etc. It is important to characterise the increasing scatter in the data measured at lower penetration depths observed in the nano-indentation, for the technique to be effectively applied. Surface roughness is one of the parameters contributing for the scatter. This paper is aimed at quantifying the nature and the amount of scatter that will be introduced in the measurement due to the roughness of the surface on which the indentation is carried out. For this the surface is simulated using the Weierstrass-Mandelbrot function which gives a self-affine fractal. The contact area of this surface with a conical indenter with a spherical cap at the tip is measured numerically. The indentation process is simulated using the spherical cavity model. This eliminates the indentation size effect observed at the micron and sub-micron scales. It has been observed that there exists a definite penetration depth in relation to the surface roughness beyond which the scatter is reduced such that reliable data could be obtained.
Resumo:
We show that a large class of Cantor-like sets of R-d, d >= 1, contains uncountably many badly approximable numbers, respectively badly approximable vectors, when d >= 2. An analogous result is also proved for subsets of R-d arising in the study of geodesic flows corresponding to (d+1)-dimensional manifolds of constant negative curvature and finite volume, generalizing the set of badly approximable numbers in R. Furthermore, we describe a condition on sets, which is fulfilled by a large class, ensuring a large intersection with these Cantor-like sets.
Resumo:
The rainbow connection number of a connected graph is the minimum number of colors needed to color its edges, so that every pair of its vertices is connected by at least one path in which no two edges are colored the same. In this article we show that for every connected graph on n vertices with minimum degree delta, the rainbow connection number is upper bounded by 3n/(delta + 1) + 3. This solves an open problem from Schiermeyer (Combinatorial Algorithms, Springer, Berlin/Hiedelberg, 2009, pp. 432437), improving the previously best known bound of 20n/delta (J Graph Theory 63 (2010), 185191). This bound is tight up to additive factors by a construction mentioned in Caro et al. (Electr J Combin 15(R57) (2008), 1). As an intermediate step we obtain an upper bound of 3n/(delta + 1) - 2 on the size of a connected two-step dominating set in a connected graph of order n and minimum degree d. This bound is tight up to an additive constant of 2. This result may be of independent interest. We also show that for every connected graph G with minimum degree at least 2, the rainbow connection number, rc(G), is upper bounded by Gc(G) + 2, where Gc(G) is the connected domination number of G. Bounds of the form diameter(G)?rc(G)?diameter(G) + c, 1?c?4, for many special graph classes follow as easy corollaries from this result. This includes interval graphs, asteroidal triple-free graphs, circular arc graphs, threshold graphs, and chain graphs all with minimum degree delta at least 2 and connected. We also show that every bridge-less chordal graph G has rc(G)?3.radius(G). In most of these cases, we also demonstrate the tightness of the bounds.
Resumo:
The Maximum Weight Independent Set (MWIS) problem on graphs with vertex weights asks for a set of pairwise nonadjacent vertices of maximum total weight. The complexity of the MWIS problem for hole-free graphs is unknown. In this paper, we first prove that the MWIS problem for (hole, dart, gem)-free graphs can be solved in O(n(3))-time. By using this result, we prove that the MWIS problem for (hole, dart)-free graphs can be solved in O(n(4))-time. Though the MWIS problem for (hole, dart, gem)-free graphs is used as a subroutine, we also give the best known time bound for the solvability of the MWIS problem in (hole, dart, gem)-free graphs. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We consider an inverse elasticity problem in which forces and displacements are known on the boundary and the material property distribution inside the body is to be found. In other words, we need to estimate the distribution of constitutive properties using the finite boundary data sets. Uniqueness of the solution to this problem is proved in the literature only under certain assumptions for a given complete Dirichlet-to-Neumann map. Another complication in the numerical solution of this problem is that the number of boundary data sets needed to establish uniqueness is not known even under the restricted cases where uniqueness is proved theoretically. In this paper, we present a numerical technique that can assess the sufficiency of given boundary data sets by computing the rank of a sensitivity matrix that arises in the Gauss-Newton method used to solve the problem. Numerical experiments are presented to illustrate the method.
Resumo:
In this paper, we study the asymptotic behavior of an optimal control problem for the time-dependent Kirchhoff-Love plate whose middle surface has a very rough boundary. We identify the limit problem which is an optimal control problem for the limit equation with a different cost functional.
Resumo:
Future space-based gravity wave (GW) experiments such as the Big Bang Observatory (BBO), with their excellent projected, one sigma angular resolution, will measure the luminosity distance to a large number of GW sources to high precision, and the redshift of the single galaxies in the narrow solid angles towards the sources will provide the redshifts of the gravity wave sources. One sigma BBO beams contain the actual source in only 68% of the cases; the beams that do not contain the source may contain a spurious single galaxy, leading to misidentification. To increase the probability of the source falling within the beam, larger beams have to be considered, decreasing the chances of finding single galaxies in the beams. Saini et al. T.D. Saini, S.K. Sethi, and V. Sahni, Phys. Rev. D 81, 103009 (2010)] argued, largely analytically, that identifying even a small number of GW source galaxies furnishes a rough distance-redshift relation, which could be used to further resolve sources that have multiple objects in the angular beam. In this work we further develop this idea by introducing a self-calibrating iterative scheme which works in conjunction with Monte Carlo simulations to determine the luminosity distance to GW sources with progressively greater accuracy. This iterative scheme allows one to determine the equation of state of dark energy to within an accuracy of a few percent for a gravity wave experiment possessing a beam width an order of magnitude larger than BBO (and therefore having a far poorer angular resolution). This is achieved with no prior information about the nature of dark energy from other data sets such as type Ia supernovae, baryon acoustic oscillations, cosmic microwave background, etc. DOI:10.1103/PhysRevD.87.083001