870 resultados para Rough fuzzy controller
Resumo:
Displacement of conventional synchronous generators by non-inertial units such as wind or solar generators will result in reduced-system inertia affecting under-frequency response. Frequency control is important to avoid equipment damage, load shedding, and possible blackouts. Wind generators along with energy storage systems can be used to improve the frequency response of low-inertia power system. This paper proposes a fuzzy-logic based frequency controller (FFC) for wind farms augmented with energy storage systems (wind-storage system) to improve the primary frequency response in future low-inertia hybrid power system. The proposed controller provides bidirectional real power injection using system frequency deviations and rate of change of frequency (RoCoF). Moreover, FFC ensures optimal use of energy from wind farms and storage units by eliminating the inflexible de-loading of wind energy and minimizing the required storage capacity. The efficacy of the proposed FFC is verified on the low-inertia hybrid power system.
Resumo:
This paper describes an application of a FACTS supplementary controller for damping of inter area oscillations in power systems. A fuzzy logic controller is designed to regulate a thyristor controlled series capacitor (TCSC) in a multimachine environment to produce additional damping in the system. Simultaneous application of the excitation controller and proposed controller is also investigated. Simulation studies have been done with different types of disturbances and the results are shown to be consistent with the expected performance of the supplementary controller.
Resumo:
In this paper, a method for the tuning the membership functions of a Mamdani type Fuzzy Logic Controller (FLC) using the Clonal Selection Algorithm(CSA) a model of the Artificial Immune System(AIS) paradigm is examined. FLC's are designed for two problems, firstly the linear cart centering problem and secondly the highly nonlinear inverted pendulum problem. The FLC tuned by AIS is compared with FLC tuned by GA. In order to check the robustness of the designed PLC's white noise was added to the system, further, the masses of the cart and the length and mass of the pendulum are changed. The PLC's were also tested in the presence of faulty rules. Finally, Kruskal Wallis test was performed to compare the performance of the GA and AIS. An insight into the algorithms are also given by studying the effect of the important parameters of GA and AIS.
Resumo:
提出了一种新的最优模糊PID控制器,它由两部分组成,即在线模糊推理机构和带有不完全微分的常规PID控制器,在模糊推理机构中,引入了三个可调节因子xp,xi和xd,其作用是进一步修改和优化模糊推理的结果,以使控制器对一个给定对象具有最优的控制效果,可调节因子的最优值采用ITAE准则及Nelder和Mead提出的柔性多面体最优搜索算法加以确定,这种PID控制器被用来控制由作者设计的智能人工腿中的一个直流电机,仿真结果表明该控制器的设计是非常有效的,它可被用于控制各种不同的对象和过程。
Resumo:
R. Jensen and Q. Shen. Fuzzy-Rough Sets Assisted Attribute Selection. IEEE Transactions on Fuzzy Systems, vol. 15, no. 1, pp. 73-89, 2007.
Resumo:
R. Jensen and Q. Shen. Semantics-Preserving Dimensionality Reduction: Rough and Fuzzy-Rough Based Approaches. IEEE Transactions on Knowledge and Data Engineering, 16(12): 1457-1471. 2004.
Resumo:
R. Jensen and Q. Shen, 'Fuzzy-Rough Data Reduction with Ant Colony Optimization,' Fuzzy Sets and Systems, vol. 149, no. 1, pp. 5-20, 2005.
Resumo:
R. Jensen and Q. Shen, 'Fuzzy-Rough Attribute Reduction with Application to Web Categorization,' Fuzzy Sets and Systems, vol. 141, no. 3, pp. 469-485, 2004.
Resumo:
Q. Shen and R. Jensen, 'Selecting Informative Features with Fuzzy-Rough Sets and its Application for Complex Systems Monitoring,' Pattern Recognition, vol. 37, no. 7, pp. 1351-1363, 2004.
Resumo:
P. Lingras and R. Jensen, 'Survey of Rough and Fuzzy Hybridization,' Proceedings of the 16th International Conference on Fuzzy Systems (FUZZ-IEEE'07), pp. 125-130, 2007.
Resumo:
R. Jensen and Q. Shen, 'Tolerance-based and Fuzzy-Rough Feature Selection,' Proceedings of the 16th International Conference on Fuzzy Systems (FUZZ-IEEE'07), pp. 877-882, 2007.
Resumo:
R. Jensen and Q. Shen, 'Webpage Classification with ACO-enhanced Fuzzy-Rough Feature Selection,' Proceedings of the Fifth International Conference on Rough Sets and Current Trends in Computing (RSCTC 2006), LNAI 4259, pp. 147-156, 2006.
Resumo:
R. Jensen and Q. Shen, 'Fuzzy-Rough Feature Significance for Fuzzy Decision Trees,' in Proceedings of the 2005 UK Workshop on Computational Intelligence, pp. 89-96, 2005.
Resumo:
Computational Intelligence and Feature Selection provides a high level audience with both the background and fundamental ideas behind feature selection with an emphasis on those techniques based on rough and fuzzy sets, including their hybridizations. It introduces set theory, fuzzy set theory, rough set theory, and fuzzy-rough set theory, and illustrates the power and efficacy of the feature selections described through the use of real-world applications and worked examples. Program files implementing major algorithms covered, together with the necessary instructions and datasets, are available on the Web.