960 resultados para Root mean square error
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The noteworthy of this study is to predict seven quality parameters for beef samples using time-domain nuclear magnetic resonance (TD-NMR) relaxometry data and multivariate models. Samples from 61 Bonsmara heifers were separated into five groups based on genetic (breeding composition) and feed system (grain and grass feed). Seven sample parameters were analyzed by reference methods; among them, three sensorial parameters, flavor, juiciness and tenderness and four physicochemical parameters, cooking loss, fat and moisture content and instrumental tenderness using Warner Bratzler shear force (WBSF). The raw beef samples of the same animals were analyzed by TD-NMR relaxometry using Carr-Purcell-Meiboom-Gill (CPMG) and Continuous Wave-Free Precession (CWFP) sequences. Regression models computed by partial least squares (PLS) chemometric technique using CPMG and CWFP data and the results of the classical analysis were constructed. The results allowed for the prediction of aforementioned seven properties. The predictive ability of the method was evaluated using the root mean square error (RMSE) for the calibration (RMSEC) and validation (RMSEP) data sets. The reference and predicted values showed no significant differences at a 95% confidence level.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Evaluated statistical equations estimates (based on radiometric fractions) of the hourly diffuse radiation incident on inclined surfaces for the North to 12.85, 22.85 and 32.85°, the climate and geographical conditions of Botucatu, SP. The database was generated from April/1998 to December/2007, with measures in the three tilted surfaces in different periods, but concomitant to the horizontal plane. In the validation of the equations were used indicative statistics MBE (mean absolute error), RMSE (square root mean square error) and index adjustment (d) for three inclinations and conditions of sky coverage. The increased angle of inclination of the surface led to increased scattering of hourly values for the coefficient of atmospheric transmissivity of diffuse radiation for inclined and horizontal surfaces. Estimates of diffuse radiation on the basis of hourly tilted horizontal global radiation occur for quadratic polynomial models, which adjust K'Dβ maximum values of between 0.14 and 0.30 for winter and summer when KTH varies between 0.40 and 0.66, indicating that energy, the highest values of diffuse radiation occur in partly cloudy sky conditions and / or partially open. The increase in atmospheric transmissivity decreases the performance of annual and monthly equations at all inclinations.
Resumo:
The growth parameters (growth rate, mu and lag time, lambda) of three different strains each of Salmonella enterica and Listeria monocytogenes in minimally processed lettuce (MPL) and their changes as a function of temperature were modeled. MPL were packed under modified atmosphere (5% O-2, 15% CO2 and 80% N-2), stored at 7-30 degrees C and samples collected at different time intervals were enumerated for S. enterica and L monocytogenes. Growth curves and equations describing the relationship between mu and lambda as a function of temperature were constructed using the DMFit Excel add-in and through linear regression, respectively. The predicted growth parameters for the pathogens observed in this study were compared to ComBase, Pathogen modeling program (PMP) and data from the literature. High R-2 values (0.97 and 0.93) were observed for average growth curves of different strains of pathogens grown on MPL Secondary models of mu and lambda for both pathogens followed a linear trend with high R2 values (>0.90). Root mean square error (RMSE) showed that the models obtained are accurate and suitable for modeling the growth of S. enterica and L monocytogenes in MP lettuce. The current study provides growth models for these foodborne pathogens that can be used in microbial risk assessment. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
O objetivo deste trabalho foi parametrizar e avaliar o modelo DSSAT/Canegro para cinco variedades brasileiras de cana-de-açúcar. A parametrização foi realizada a partir do uso de dados biométricos e de crescimento das variedades CTC 4, CTC 7, CTC 20, RB 86-7515 e RB 83-5486, obtidos em cinco localidades brasileiras. Foi realizada análise de sensibilidade local para os principais parâmetros. A parametrização do modelo foi feita por meio da técnica de estimativa da incerteza de probabilidade generalizada ("generalized likelihood uncertainty estimation", Glue). Para a avaliação das predições, foram utilizados, como indicadores estatísticos, o coeficiente de determinação (R2), o índice D de Willmott e a raiz quadrada do erro-médio (RMSE). As variedades CTC apresentaram índice D entre 0,870 e 0,944, para índice de área foliar, altura de colmo, perfilhamento e teor de sacarose. A variedade RB 83-5486 apresentou resultados similares para teor de sacarose e massa de matéria fresca do colmo, enquanto a variedade RB 86-7515 apresentou valores entre 0,665 e 0,873, para as variáveis avaliadas.
Resumo:
[EN] Here we present monthly, basin-wide maps of the partial pressure of carbon dioxide (pCO2) for the North Atlantic on a latitude by longitude grid for years 2004 through 2006 inclusive. The maps have been computed using a neural network technique which reconstructs the non-linear relationships between three biogeochemical parameters and marine pCO2. A self organizing map (SOM) neural network has been trained using 389 000 triplets of the SeaWiFSMODIS chlorophyll-a concentration, the NCEP/NCAR reanalysis sea surface temperature, and the FOAM mixed layer depth. The trained SOM was labelled with 137 000 underway pCO2 measurements collected in situ during 2004, 2005 and 2006 in the North Atlantic, spanning the range of 208 to 437atm. The root mean square error (RMSE) of the neural network fit to the data is 11.6?atm, which equals to just above 3 per cent of an average pCO2 value in the in situ dataset. The seasonal pCO2 cycle as well as estimates of the interannual variability in the major biogeochemical provinces are presented and discussed. High resolution combined with basin-wide coverage makes the maps a useful tool for several applications such as the monitoring of basin-wide air-sea CO2 fluxes or improvement of seasonal and interannual marine CO2 cycles in future model predictions. The method itself is a valuable alternative to traditional statistical modelling techniques used in geosciences.
Resumo:
Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.
Resumo:
Klimamontoring benötigt eine operative, raum-zeitliche Analyse der Klimavariabilität. Mit dieser Zielsetzung, funktionsbereite Karten regelmäßig zu erstellen, ist es hilfreich auf einen Blick, die räumliche Variabilität der Klimaelemente in der zeitlichen Veränderungen darzustellen. Für aktuelle und kürzlich vergangene Jahre entwickelte der Deutsche Wetterdienst ein Standardverfahren zur Erstellung solcher Karten. Die Methode zur Erstellung solcher Karten variiert für die verschiedenen Klimaelemente bedingt durch die Datengrundlage, die natürliche Variabilität und der Verfügbarkeit der in-situ Daten.rnIm Rahmen der Analyse der raum-zeitlichen Variabilität innerhalb dieser Dissertation werden verschiedene Interpolationsverfahren auf die Mitteltemperatur der fünf Dekaden der Jahre 1951-2000 für ein relativ großes Gebiet, der Region VI der Weltorganisation für Meteorologie (Europa und Naher Osten) angewendet. Die Region deckt ein relativ heterogenes Arbeitsgebiet von Grönland im Nordwesten bis Syrien im Südosten hinsichtlich der Klimatologie ab.rnDas zentrale Ziel der Dissertation ist eine Methode zur räumlichen Interpolation der mittleren Dekadentemperaturwerte für die Region VI zu entwickeln. Diese Methode soll in Zukunft für die operative monatliche Klimakartenerstellung geeignet sein. Diese einheitliche Methode soll auf andere Klimaelemente übertragbar und mit der entsprechenden Software überall anwendbar sein. Zwei zentrale Datenbanken werden im Rahmen dieser Dissertation verwendet: So genannte CLIMAT-Daten über dem Land und Schiffsdaten über dem Meer.rnIm Grunde wird die Übertragung der Punktwerte der Temperatur per räumlicher Interpolation auf die Fläche in drei Schritten vollzogen. Der erste Schritt beinhaltet eine multiple Regression zur Reduktion der Stationswerte mit den vier Einflussgrößen der Geographischen Breite, der Höhe über Normalnull, der Jahrestemperaturamplitude und der thermischen Kontinentalität auf ein einheitliches Niveau. Im zweiten Schritt werden die reduzierten Temperaturwerte, so genannte Residuen, mit der Interpolationsmethode der Radialen Basis Funktionen aus der Gruppe der Neuronalen Netzwerk Modelle (NNM) interpoliert. Im letzten Schritt werden die interpolierten Temperaturraster mit der Umkehrung der multiplen Regression aus Schritt eins mit Hilfe der vier Einflussgrößen auf ihr ursprüngliches Niveau hochgerechnet.rnFür alle Stationswerte wird die Differenz zwischen geschätzten Wert aus der Interpolation und dem wahren gemessenen Wert berechnet und durch die geostatistische Kenngröße des Root Mean Square Errors (RMSE) wiedergegeben. Der zentrale Vorteil ist die wertegetreue Wiedergabe, die fehlende Generalisierung und die Vermeidung von Interpolationsinseln. Das entwickelte Verfahren ist auf andere Klimaelemente wie Niederschlag, Schneedeckenhöhe oder Sonnenscheindauer übertragbar.
Resumo:
The Advanced Very High Resolution Radiometer (AVHRR) carried on board the National Oceanic and Atmospheric Administration (NOAA) and the Meteorological Operational Satellite (MetOp) polar orbiting satellites is the only instrument offering more than 25 years of satellite data to analyse aerosols on a daily basis. The present study assessed a modified AVHRR aerosol optical depth τa retrieval over land for Europe. The algorithm might also be applied to other parts of the world with similar surface characteristics like Europe, only the aerosol properties would have to be adapted to a new region. The initial approach used a relationship between Sun photometer measurements from the Aerosol Robotic Network (AERONET) and the satellite data to post-process the retrieved τa. Herein a quasi-stand-alone procedure, which is more suitable for the pre-AERONET era, is presented. In addition, the estimation of surface reflectance, the aerosol model, and other processing steps have been adapted. The method's cross-platform applicability was tested by validating τa from NOAA-17 and NOAA-18 AVHRR at 15 AERONET sites in Central Europe (40.5° N–50° N, 0° E–17° E) from August 2005 to December 2007. Furthermore, the accuracy of the AVHRR retrieval was related to products from two newer instruments, the Medium Resolution Imaging Spectrometer (MERIS) on board the Environmental Satellite (ENVISAT) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Aqua/Terra. Considering the linear correlation coefficient R, the AVHRR results were similar to those of MERIS with even lower root mean square error RMSE. Not surprisingly, MODIS, with its high spectral coverage, gave the highest R and lowest RMSE. Regarding monthly averaged τa, the results were ambiguous. Focusing on small-scale structures, R was reduced for all sensors, whereas the RMSE solely for MERIS substantially increased. Regarding larger areas like Central Europe, the error statistics were similar to the individual match-ups. This was mainly explained with sampling issues. With the successful validation of AVHRR we are now able to concentrate on our large data archive dating back to 1985. This is a unique opportunity for both climate and air pollution studies over land surfaces.
Resumo:
In this study, the effect of time derivatives of flow rate and rotational speed was investigated on the mathematical modeling of a rotary blood pump (RBP). The basic model estimates the pressure head of the pump as a dependent variable using measured flow and speed as predictive variables. Performance of the model was evaluated by adding time derivative terms for flow and speed. First, to create a realistic working condition, the Levitronix CentriMag RBP was implanted in a sheep. All parameters from the model were physically measured and digitally acquired over a wide range of conditions, including pulsatile speed. Second, a statistical analysis of the different variables (flow, speed, and their time derivatives) based on multiple regression analysis was performed to determine the significant variables for pressure head estimation. Finally, different mathematical models were used to show the effect of time derivative terms on the performance of the models. In order to evaluate how well the estimated pressure head using different models fits the measured pressure head, root mean square error and correlation coefficient were used. The results indicate that inclusion of time derivatives of flow and speed can improve model accuracy, but only minimally.