866 resultados para Robust Policymaking
Resumo:
Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.
Resumo:
Cognitive radio is a wireless technology aimed at improvingthe efficiency use of the radio-electric spectrum, thus facilitating a reductionin the load on the free frequency bands. Cognitive radio networkscan scan the spectrum and adapt their parameters to operate in the unoccupiedbands. To avoid interfering with licensed users operating on a givenchannel, the networks need to be highly sensitive, which is achieved byusing cooperative sensing methods. Current cooperative sensing methodsare not robust enough against occasional or continuous attacks. This articleoutlines a Group Fusion method that takes into account the behavior ofusers over the short and long term. On fusing the data, the method is basedon giving more weight to user groups that are more unanimous in their decisions.Simulations have been performed in a dynamic environment withinterferences. Results prove that when attackers are present (both reiterativeor sporadic), the proposed Group Fusion method has superior sensingcapability than other methods.
Resumo:
Peer-reviewed
Resumo:
This paper describes an audio watermarking scheme based on lossy compression. The main idea is taken from an image watermarking approach where the JPEG compression algorithm is used to determine where and how the mark should be placed. Similarly, in the audio scheme suggested in this paper, an MPEG 1 Layer 3 algorithm is chosen for compression to determine the position of the mark bits and, thus, the psychoacoustic masking of the MPEG 1 Layer 3compression is implicitly used. This methodology provides with a high robustness degree against compression attacks. The suggested scheme is also shown to succeed against most of the StirMark benchmark attacks for audio.
Resumo:
This paper presents a Bayesian approach to the design of transmit prefiltering matrices in closed-loop schemes robust to channel estimation errors. The algorithms are derived for a multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. Two different optimizationcriteria are analyzed: the minimization of the mean square error and the minimization of the bit error rate. In both cases, the transmitter design is based on the singular value decomposition (SVD) of the conditional mean of the channel response, given the channel estimate. The performance of the proposed algorithms is analyzed,and their relationship with existing algorithms is indicated. As withother previously proposed solutions, the minimum bit error rate algorithmconverges to the open-loop transmission scheme for very poor CSI estimates.
Resumo:
The problem of robust beamformer design for mobile communicationsapplications in the presence of moving co-channel sources isaddressed. A generalization of the optimum beamformer based on a statisticalmodel accounting for source movement is proposed. The new methodis easily implemented and is shown to offer dramatic improvements overconventional optimum beamforming for moving sources under a varietyof operating conditions.
Resumo:
We propose robust estimators of the generalized log-gamma distribution and, more generally, of location-shape-scale families of distributions. A (weighted) Q tau estimator minimizes a tau scale of the differences between empirical and theoretical quantiles. It is n(1/2) consistent; unfortunately, it is not asymptotically normal and, therefore, inconvenient for inference. However, it is a convenient starting point for a one-step weighted likelihood estimator, where the weights are based on a disparity measure between the model density and a kernel density estimate. The one-step weighted likelihood estimator is asymptotically normal and fully efficient under the model. It is also highly robust under outlier contamination. Supplementary materials are available online.
Resumo:
We consider robust parametric procedures for univariate discrete distributions, focusing on the negative binomial model. The procedures are based on three steps: ?First, a very robust, but possibly inefficient, estimate of the model parameters is computed. ?Second, this initial model is used to identify outliers, which are then removed from the sample. ?Third, a corrected maximum likelihood estimator is computed with the remaining observations. The final estimate inherits the breakdown point (bdp) of the initial one and its efficiency can be significantly higher. Analogous procedures were proposed in [1], [2], [5] for the continuous case. A comparison of the asymptotic bias of various estimates under point contamination points out the minimum Neyman's chi-squared disparity estimate as a good choice for the initial step. Various minimum disparity estimators were explored by Lindsay [4], who showed that the minimum Neyman's chi-squared estimate has a 50% bdp under point contamination; in addition, it is asymptotically fully efficient at the model. However, the finite sample efficiency of this estimate under the uncontaminated negative binomial model is usually much lower than 100% and the bias can be strong. We show that its performance can then be greatly improved using the three step procedure outlined above. In addition, we compare the final estimate with the procedure described in
Resumo:
We prove the existence and local uniqueness of invariant tori on the verge of breakdown for two systems: the quasi-periodically driven logistic map and the quasi-periodically forced standard map. These systems exemplify two scenarios: the Heagy-Hammel route for the creation of strange non- chaotic attractors and the nonsmooth bifurcation of saddle invariant tori. Our proofs are computer- assisted and are based on a tailored version of the Newton-Kantorovich theorem. The proofs cannot be performed using classical perturbation theory because the two scenarios are very far from the perturbative regime, and fundamental hypotheses such as reducibility or hyperbolicity either do not hold or are very close to failing. Our proofs are based on a reliable computation of the invariant tori and a careful study of their dynamical properties, leading to the rigorous validation of the numerical results with our novel computational techniques.
Resumo:
Lexical diversity measures are notoriously sensitive to variations of sample size and recent approaches to this issue typically involve the computation of the average variety of lexical units in random subsamples of fixed size. This methodology has been further extended to measures of inflectional diversity such as the average number of wordforms per lexeme, also known as the mean size of paradigm (MSP) index. In this contribution we argue that, while random sampling can indeed be used to increase the robustness of inflectional diversity measures, using a fixed subsample size is only justified under the hypothesis that the corpora that we compare have the same degree of lexematic diversity. In the more general case where they may have differing degrees of lexematic diversity, a more sophisticated strategy can and should be adopted. A novel approach to the measurement of inflectional diversity is proposed, aiming to cope not only with variations of sample size, but also with variations of lexematic diversity. The robustness of this new method is empirically assessed and the results show that while there is still room for improvement, the proposed methodology considerably attenuates the impact of lexematic diversity discrepancies on the measurement of inflectional diversity.
Resumo:
Introduction: Gamma Knife surgery (GKS) is a noninvasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes the targeting of the ventrointermediate nucleus of the thalamus (e.g., Vim) for tremor. Objective: To enhance anatomic imaging for Vim GKS using high-field (7 T) MRI and Diffusion Weighted Imaging (DWI). Methods: Five young healthy subjects and two patients were scanned both on 3 and 7 T MRI. The protocol was the same in all cases, and included: T1-weighted (T1w) and DWI at 3T; susceptibility weighted images (SWI) at 7T for the visualization of thalamic subparts. SWI was further integrated into the Gamma Plan Software® (LGP, Elekta Instruments, AB, Sweden) and co-registered with 3T images. A simulation of targeting of the Vim was done using the quadrilatere of Guyot. Furthermore, a correlation with the position of the found target on SWI and also on DWI (after clustering of the different thalamic nuclei) was performed. Results: For the 5 healthy subjects, there was a good correlation between the position of the Vim on SWI, DWI and the GKS targeting. For the patients, on the pretherapeutic acquisitions, SWI helped in positioning the target. For posttherapeutic sequences, SWI supposed position of the Vim matched the corresponding contrast enhancement seen at follow-up MRI. Additionally, on the patient's follow-up T1w images, we could observe a small area of contrast-enhancement corresponding to the target used in GKS (e.g., Vim), which belongs to the Ventral-Lateral-Ventral (VLV) nuclei group. Our clustering method resulted in seven thalamic groups. Conclusion: The use of SWI provided us with a superior resolution and an improved image contrast within the central gray matter, enabling us to directly visualize the Vim. We additionally propose a novel robust method for segmenting the thalamus in seven anatomical groups based on DWI. The localization of the GKS target on the follow-up T1w images, as well as the position of the Vim on 7 T, have been used as a gold standard for the validation of VLV cluster's emplacement. The contrast enhancement corresponding to the targeted area was always localized inside the expected cluster, providing strong evidence of the VLV segmentation accuracy. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T (e.g., quadrilatere of Guyot, histological atlases, DWI) seems to show a very good anatomical matching.
Resumo:
Social insects are promising model systems for epigenetics due to their immense morphological and behavioral plasticity. Reports that DNA methylation differs between the queen and worker castes in social insects [1-4] have implied a role for DNA methylation in regulating division of labor. To better understand the function of DNA methylation in social insects, we performed whole-genome bisulfite sequencing on brains of the clonal raider ant Cerapachys biroi, whose colonies alternate between reproductive (queen-like) and brood care (worker-like) phases [5]. Many cytosines were methylated in all replicates (on average 29.5% of the methylated cytosines in a given replicate), indicating that a large proportion of the C. biroi brain methylome is robust. Robust DNA methylation occurred preferentially in exonic CpGs of highly and stably expressed genes involved in core functions. Our analyses did not detect any differences in DNA methylation between the queen-like and worker-like phases, suggesting that DNA methylation is not associated with changes in reproduction and behavior in C. biroi. Finally, many cytosines were methylated in one sample only, due to either biological or experimental variation. By applying the statistical methods used in previous studies [1-4, 6] to our data, we show that such sample-specific DNA methylation may underlie the previous findings of queen- and worker-specific methylation. We argue that there is currently no evidence that genome-wide variation in DNA methylation is associated with the queen and worker castes in social insects, and we call for a more careful interpretation of the available data.
Resumo:
Peer reviewed