993 resultados para Reversible polynomial vector fields
Resumo:
Exercises and solutions in PDF
Resumo:
Exercises and solutions in PDF
Resumo:
Exercises and solutions in LaTex
Resumo:
Exercises and solution in PDF
Resumo:
Using the method of Lorenz (1982), we have estimated the predictability of a recent version of the European Center for Medium-Range Weather Forecasting (ECMWF) model using two different estimates of the initial error corresponding to 6- and 24-hr forecast errors, respectively. For a 6-hr forecast error of the extratropical 500-hPa geopotential height field, a potential increase in forecast skill by more than 3 d is suggested, indicating a further increase in predictability by another 1.5 d compared to the use of a 24-hr forecast error. This is due to a smaller initial error and to an initial error reduction resulting in a smaller averaged growth rate for the whole 7-d forecast. A similar assessment for the tropics using the wind vector fields at 850 and 250 hPa suggests a huge potential improvement with a 7-d forecast providing the same skill as a 1-d forecast now. A contributing factor to the increase in the estimate of predictability is the apparent slow increase of error during the early part of the forecast.
Resumo:
This paper considers left-invariant control systems defined on the Lie groups SU(2) and SO(3). Such systems have a number of applications in both classical and quantum control problems. The purpose of this paper is two-fold. Firstly, the optimal control problem for a system varying on these Lie Groups, with cost that is quadratic in control is lifted to their Hamiltonian vector fields through the Maximum principle of optimal control and explicitly solved. Secondly, the control systems are integrated down to the level of the group to give the solutions for the optimal paths corresponding to the optimal controls. In addition it is shown here that integrating these equations on the Lie algebra su(2) gives simpler solutions than when these are integrated on the Lie algebra so(3).
Resumo:
This note investigates the motion control of an autonomous underwater vehicle (AUV). The AUV is modeled as a nonholonomic system as any lateral motion of a conventional, slender AUV is quickly damped out. The problem is formulated as an optimal kinematic control problem on the Euclidean Group of Motions SE(3), where the cost function to be minimized is equal to the integral of a quadratic function of the velocity components. An application of the Maximum Principle to this optimal control problem yields the appropriate Hamiltonian and the corresponding vector fields give the necessary conditions for optimality. For a special case of the cost function, the necessary conditions for optimality can be characterized more easily and we proceed to investigate its solutions. Finally, it is shown that a particular set of optimal motions trace helical paths. Throughout this note we highlight a particular case where the quadratic cost function is weighted in such a way that it equates to the Lagrangian (kinetic energy) of the AUV. For this case, the regular extremal curves are constrained to equate to the AUV's components of momentum and the resulting vector fields are the d'Alembert-Lagrange equations in Hamiltonian form.
Resumo:
In this paper, Bond Graphs are employed to develop a novel mathematical model of conventional switched-mode DC-DC converters valid for both continuous and discontinuous conduction modes. A unique causality bond graph model of hybrid models is suggested with the operation of the switch and the diode to be represented by a Modulated Transformer with a binary input and a resistor with fixed conductance causality. The operation of the diode is controlled using an if-then function within the model. The extracted hybrid model is implemented on a Boost and Buck converter with their operations to change from CCM to DCM and to return to CCM. The vector fields of the models show validity in a wide operation area and comparison with the simulation of the converters using PSPICE reveals high accuracy of the proposed model, with the Normalised Root Means Square Error and the Maximum Absolute Error remaining adequately low. The model is also experimentally tested on a Buck topology.
Resumo:
We consider real analytic involutive structures V, of co-rank one, defined on a real analytic paracompact orientable manifold M. To each such structure we associate certain connected subsets of M which we call the level sets of V. We prove that analytic regularity propagates along them. With a further assumption on the level sets of V we characterize the global analytic hypoellipticity of a differential operator naturally associated to V. As an application we study a case of tube structures.
Resumo:
Recently, in [3] Horava and Melby-Thompson proposed a nonrelativistic gravity theory with extended gauge symmetry that is free of the spin-0 graviton. We propose a minimal substitution recipe to implement this extended gauge symmetry which reproduces the results obtained by them. Our prescription has the advantage of being manifestly gauge invariant and immediately generalizable to other fields, like matter. We briefly discuss the coupling of gravity with scalar and vector fields found by our method. We show also that the extended gauge invariance in gravity does not force the value of. to be lambda = 1 as claimed in [3]. However, the spin-0 graviton is eliminated even for general lambda.
Resumo:
In this work we discuss the problem of smooth and analytic regularity for hyperfunction solutions to linear partial differential equations with analytic coefficients. In particular we show that some well known ""sum of squares"" operators, which satisfy Hormander`s condition and consequently are hypoelliptic, admit hyperfunction solutions that are not smooth (in particular they are not distributions).
Resumo:
The energy of a unit vector field X on a closed Riemannian manifold M is defined as the energy of the section into T(1) M determined by X. For odd-dimensional spheres, the energy functional has an infimum for each dimension 2k + 1 which is not attained by any non-singular vector field for k > 1. For k = 1, Hopf vector fields are the unique minima. In this paper we show that for any closed Riemannian manifold, the energy of a frame defined on the manifold, possibly except on a finite subset, admits a lower bound in terms of the total scalar curvature of the manifold. In particular, for odd-dimensional spheres this lower bound is attained by a family of frames defined on the sphere minus one point and consisting of vector fields parallel along geodesics.
Resumo:
O objetivo deste trabalho é estudar os efeitos eletromagnéticos e fluido-dinâmicos induzidos no aço, decorrentes do uso de um agitador eletromagnético. Para tal, foi proposta a construção de um modelo numérico que resolva, de forma acoplada, os problemas de eletromagnetismo e fluido-dinâmica. O modelo numérico do problema eletromagnético, em elementos finitos, foi construído utilizando-se o software Opera-3d/Elektra da Vector Fields. O mesmo foi validado com medidas experimentais de densidade de fluxo magnético feitas na usina. O escoamento decorrente da agitação eletromagnética foi resolvido fazendo-se o acoplamento das forças de Lorentz com as equações de Navier-Stokes. Essas últimas foram resolvidas pelo método de volumes finitos, usando-se o software CFX-4 da AEA Technology. O modelo eletromagnético mostrou que existe um torque máximo dependente da freqüência do campo magnético. Também foi observado que a força magnética aumenta em quatro vezes seu valor, quando a corrente é duplicada. O perfil de escoamento produzido no molde, sob agitação eletromagnética, indica, que as situações de lingotamento testadas, não propiciam o arraste da escória. A velocidade crítica de arraste, determinada via modelo físico, não foi atingida para nenhum caso testado. O modelo fluido-dinâmico e térmico apresentou um aumento do fluxo de calor cedido pelo fluido para a casca solidificada com o uso do agitador eletromagnético. Como conseqüência, observou-se uma queda na temperatura do banho. Também foi observado, que o uso do agitador propicia a remoção de inclusões das camadas mais externas do tarugo. Ao mesmo tempo, notou-se que o uso do agitador aumenta o índice de remoção de inclusões para as duas seções de molde analisadas.
Resumo:
This thesis presents general methods in non-Gaussian analysis in infinite dimensional spaces. As main applications we study Poisson and compound Poisson spaces. Given a probability measure μ on a co-nuclear space, we develop an abstract theory based on the generalized Appell systems which are bi-orthogonal. We study its properties as well as the generated Gelfand triples. As an example we consider the important case of Poisson measures. The product and Wick calculus are developed on this context. We provide formulas for the change of the generalized Appell system under a transformation of the measure. The L² structure for the Poisson measure, compound Poisson and Gamma measures are elaborated. We exhibit the chaos decomposition using the Fock isomorphism. We obtain the representation of the creation, annihilation operators. We construct two types of differential geometry on the configuration space over a differentiable manifold. These two geometries are related through the Dirichlet forms for Poisson measures as well as for its perturbations. Finally, we construct the internal geometry on the compound configurations space. In particular, the intrinsic gradient, the divergence and the Laplace-Beltrami operator. As a result, we may define the Dirichlet forms which are associated to a diffusion process. Consequently, we obtain the representation of the Lie algebra of vector fields with compact support. All these results extends directly for the marked Poisson spaces.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)