985 resultados para Reverse Plugging Effect
Resumo:
Objective: We investigated the effect of advanced glycated albumin (AGE-albumin) on macrophage sensitivity to inflammation elicited by S100B calgranulin and lipopolysaccharide (LPS) and the mechanism by which HDL modulates this response. We also measured the influence of the culture medium, isolated from macrophages treated with AGE-albumin, on reverse cholesterol transport (RCT). Methods and results: Macrophages were incubated with control (C) or AGE-albumin in the presence or absence of HDL, followed by incubations with S100B or LPS. Also, culture medium obtained from cells treated with C- or AGE-albumin, following S100B or LPS stimulation was utilized to treat naive macrophages in order to evaluate cholesterol efflux and the expression of HDL receptors. In comparison with C-albumin, AGE-albumin, promoted a greater secretion of cytokines after stimulation with S100B or LPS. A greater amount of cytokines was also produced by macrophages treated with AGE-albumin even in the presence of HDL Cytokine-enriched medium, drawn from incubations with AGE-albumin and S100B or LPS impaired the cholesterol efflux mediated by apoA-I (23% and 37%, respectively), HDL2 (43% and 47%, respectively) and HDL3 (20% and 8.5%, respectively) and reduced ABCA-1 protein level (16% and 26%, respectively). Conclusions: AGE-albumin primes macrophages for an inflammatory response impairing the RCT. Moreover, AGE-albumin abrogates the anti-inflammatory role of HDL, which may aggravate the development of atherosclerosis in DM. (C) 2012 Elsevier BM. All rights reserved.
Resumo:
Beet necrotic yellow vein virus (BNYVV), the leading infectious agent that affects sugar beet, is included within viruses transmitted through the soil from plasmodiophorid as Polymyxa betae. BNYVV is the causal agent of Rhizomania, which induces abnormal rootlet proliferation and is widespread in the sugar beet growing areas in Europe, Asia and America; for review see (Peltier et al., 2008). In this latter continent, Beet soil-borne mosaic virus (BSBMV) has been identified (Lee et al., 2001) and belongs to the benyvirus genus together with BNYVV, both vectored by P. betae. BSBMV is widely distributed only in the United States and it has not been reported yet in others countries. It was first identified in Texas as a sugar beet virus morphologically similar but serologically distinct to BNYVV. Subsequent sequence analysis of BSBMV RNAs evidenced similar genomic organization to that of BNYVV but sufficient molecular differences to distinct BSBMV and BNYVV in two different species (Rush et al., 2003). Benyviruses field isolates usually consist of four RNA species but some BNYVV isolates contain a fifth RNA. RNAs -1 contains a single long ORF encoding polypeptide that shares amino acid homology with known viral RNA-dependent RNA polymerases (RdRp) and helicases. RNAs -2 contains six ORFs: capsid protein (CP), one readthrough protein, triple gene block proteins (TGB) that are required for cell-to-cell virus movement and the sixth 14 kDa ORF is a post-translation gene silencing suppressor. RNAs -3 is involved on disease symptoms and is essential for virus systemic movement. BSBMV RNA-3 can be trans-replicated, trans-encapsidated by the BNYVV helper strain (RNA-1 and -2) (Ratti et al., 2009). BNYVV RNA-4 encoded one 31 kDa protein and is essential for vector interactions and virus transmission by P. betae (Rahim et al., 2007). BNYVV RNA-5 encoded 26 kDa protein that improve virus infections and accumulation in the hosts. We are interest on BSBMV effect on Rhizomania studies using powerful tools as full-length infectious cDNA clones. B-type full-length infectious cDNA clones are available (Quillet et al., 1989) as well as A/P-type RNA-3, -4 and -5 from BNYVV (unpublished). A-type BNYVV full-length clones are also available, but RNA-1 cDNA clone still need to be modified. During the PhD program, we start production of BSBMV full-length cDNA clones and we investigate molecular interactions between plant and Benyviruses exploiting biological, epidemiological and molecular similarities/divergences between BSBMV and BNYVV. During my PhD researchrs we obtained full length infectious cDNA clones of BSBMV RNA-1 and -2 and we demonstrate that they transcripts are replicated and packaged in planta and able to substitute BNYVV RNA-1 or RNA-2 in a chimeric viral progeny (BSBMV RNA-1 + BNYVV RNA-2 or BNYVV RNA-1 + BSBMV RNA-2). During BSBMV full-length cDNA clones production, unexpected 1,730 nts long form of BSBMV RNA-4 has been detected from sugar beet roots grown on BSBMV infected soil. Sequence analysis of the new BSBMV RNA-4 form revealed high identity (~100%) with published version of BSBMV RNA-4 sequence (NC_003508) between nucleotides 1-608 and 1,138-1,730, however the new form shows 528 additionally nucleotides between positions 608-1,138 (FJ424610). Two putative ORFs has been identified, the first one (nucleotides 383 to 1,234), encode a protein with predicted mass of 32 kDa (p32) and the second one (nucleotides 885 to 1,244) express an expected product of 13 kDa (p13). As for BSBMV RNA-3 (Ratti et al., 2009), full-length BSBMV RNA-4 cDNA clone permitted to obtain infectious transcripts that BNYVV viral machinery (Stras12) is able to replicate and to encapsidate in planta. Moreover, we demonstrated that BSBMV RNA-4 can substitute BNYVV RNA-4 for an efficient transmission through the vector P. betae in Beta vulgaris plants, demonstrating a very high correlation between BNYVV and BSBMV. At the same time, using BNYVV helper strain, we studied BSBMV RNA-4’s protein expression in planta. We associated a local necrotic lesions phenotype to the p32 protein expression onto mechanically inoculated C. quinoa. Flag or GFP-tagged sequences of p32 and p13 have been expressed in viral context, using Rep3 replicons, based on BNYVV RNA-3. Western blot analyses of local lesions contents, using FLAG-specific antibody, revealed a high molecular weight protein, which suggest either a strong interaction of BSBMV RNA4’s protein with host protein(s) or post translational modifications. GFP-fusion sequences permitted the subcellular localization of BSBMV RNA4’s proteins. Moreover we demonstrated the absence of self-activation domains on p32 by yeast two hybrid system approaches. We also confirmed that p32 protein is essential for virus transmission by P. betae using BNYVV helper strain and BNYVV RNA-3 and we investigated its role by the use of different deleted forms of p32 protein. Serial mechanical inoculation of wild-type BSBMV on C. quinoa plants were performed every 7 days. Deleted form of BSBMV RNA-4 (1298 bp) appeared after 14 passages and its sequence analysis shows deletion of 433 nucleotides between positions 611 and 1044 of RNA-4 new form. We demonstrated that this deleted form can’t support transmission by P. betae using BNYVV helper strain and BNYVV RNA-3, moreover we confirmed our hypothesis that BSBMV RNA-4 described by Lee et al. (2001) is a deleted form. Interesting after 21 passages we identifed one chimeric form of BSBMV RNA-4 and BSBMV RNA-3 (1146 bp). Two putative ORFs has been identified on its sequence, the first one (nucleotides 383 to 562), encode a protein with predicted mass of 7 kDa (p7), corresponding to the N-terminal of p32 protein encoded by BSBMV RNA-4; the second one (nucleotides 562 to 789) express an expected product of 9 kDa (p9) corresponding to the C-terminal of p29 encoded by BSBMV RNA-3. Results obtained by our research in this topic opened new research lines that our laboratories will develop in a closely future. In particular BSBMV p32 and its mutated forms will be used to identify factors, as host or vector protein(s), involved in the virus transmission through P. betae. The new results could allow selection or production of sugar beet plants able to prevent virus transmission then able to reduce viral inoculum in the soil.
Resumo:
The synthesis of a caged RNA phosphoramidite building block containing the oxidatively damaged base 5-hydroxycytidine (5-HOrC) has been accomplished. To determine the effect of this highly mutagenic lesion on complementary base recognition and coding properties, this building block was incorporated into a 12-mer oligoribonucleotide for Tm and CD measurements and a 31-mer template strand for primer extension experiments with HIV-, AMV- and MMLV-reverse transcriptase (RT). In UV-melting experiments, we find an unusual biphasic transition with two distinct Tm's when 5-HOrC is paired against a DNA or RNA complement with the base guanine in opposing position. The higher Tm closely matches that of a C-G base pair while the lower is close to that of a C-A mismatch. In single nucleotide extension reactions, we find substantial misincorporation of dAMP and to a lesser extent dTMP, with dAMP almost equaling that of the parent dGMP in the case of HIV-RT. A working hypothesis for the biphasic melting transition does not invoke tautomeric variability of 5-HOrC but rather local structural perturbations of the base pair at low temperature induced by interactions of the 5-HO group with the phosphate backbone. The properties of this RNA damage is discussed in the context of its putative biological function.
Resumo:
OBJECTIVE: To compare regimens consisting of either efavirenz or nevirapine and two or more nucleoside reverse transcriptase inhibitors (NRTIs) among HIV-infected, antiretroviral-naive, and AIDS-free individuals with respect to clinical, immunologic, and virologic outcomes. DESIGN: Prospective studies of HIV-infected individuals in Europe and the US included in the HIV-CAUSAL Collaboration. METHODS: Antiretroviral therapy-naive and AIDS-free individuals were followed from the time they started an NRTI, efavirenz or nevirapine, classified as following one or both types of regimens at baseline, and censored when they started an ineligible drug or at 6 months if their regimen was not yet complete. We estimated the 'intention-to-treat' effect for nevirapine versus efavirenz regimens on clinical, immunologic, and virologic outcomes. Our models included baseline covariates and adjusted for potential bias introduced by censoring via inverse probability weighting. RESULTS: A total of 15 336 individuals initiated an efavirenz regimen (274 deaths, 774 AIDS-defining illnesses) and 8129 individuals initiated a nevirapine regimen (203 deaths, 441 AIDS-defining illnesses). The intention-to-treat hazard ratios [95% confidence interval (CI)] for nevirapine versus efavirenz regimens were 1.59 (1.27, 1.98) for death and 1.28 (1.09, 1.50) for AIDS-defining illness. Individuals on nevirapine regimens experienced a smaller 12-month increase in CD4 cell count by 11.49 cells/mul and were 52% more likely to have virologic failure at 12 months as those on efavirenz regimens. CONCLUSIONS: Our intention-to-treat estimates are consistent with a lower mortality, a lower incidence of AIDS-defining illness, a larger 12-month increase in CD4 cell count, and a smaller risk of virologic failure at 12 months for efavirenz compared with nevirapine.
Resumo:
To evaluate tenofovir-related nephropathy, we quantified calculated glomerular filtration rates (GFR) and renal tubular function in 46 tenofovir-treated patients and 25 without tenofovir. We also analysed patients who stopped tenofovir for drug-related nephrotoxicity at our clinic. Tenofovir use combined with non-nucleoside reverse transcriptase inhibitors, but not with protease inhibitors, resulted in a significant increase in calculated GFR. Tenofovir use was associated with significantly lower phosphatemia and a marginally increased fractional excretion of uric acid, but no other signs of tubulopathy.
Resumo:
BACKGROUND: Constipation is a significant side effect of opioid therapy. We have previously demonstrated that naloxone-3-glucuronide (NX3G) antagonizes the motility-lowering-effect of morphine in the rat colon. AIM: To find out whether oral NX3G is able to reduce the morphine-induced delay in colonic transit time (CTT) without being absorbed and influencing the analgesic effect. METHODS: Fifteen male volunteers were included. Pharmacokinetics: after oral administration of 0.16 mg/kg NX3G, blood samples were collected over a 6-h period. Pharmacodynamics: NX3G or placebo was then given at the start time and every 4 h thereafter. Morphine (0.05 mg/kg) or placebo was injected s.c. 2 h after starting and thereafter every 6 h for 24 h. CTT was measured over a 48-h period by scintigraphy. Pressure pain threshold tests were performed. RESULTS: Neither NX3G nor naloxone was detected in the venous blood. The slowest transit time was observed during the morphine phase, which was significantly different from morphine with NX3G and placebo. The pain perception was not significantly influenced by NX3G. CONCLUSIONS: Orally administered NX3G is able to reverse the morphine-induced delay of CTT in humans without being detected in peripheral blood samples. Therefore, NX3G may improve symptoms of constipation in-patients using opioid medication without affecting opioid-analgesic effects.
Resumo:
Metzincins, such as matrix metalloproteases (MMP), and extracellular matrix (ECM) proteins are differentially regulated in inflammation. We hypothesised that metzincins are also dysregulated in experimental acute cardiac allograft rejection. We investigated the Dark Agouti-to-Lewis (DA-to-Lew) rat model of acute cardiac allograft rejection. Cyclosporine (CsA) (7.5 mg/kg/d) was given from transplantation to sacrifice (day +5). At that time, mRNA levels were analysed by Affymetrix genechip and quantitative reverse transcription polymerase chain reaction (qRTPCR). MMP protein and activities were analysed by immunohistology, fluorometry, zymography and Western blots. In untreated rejected DA allografts, mRNA levels of MMP-2/-7/-9/-/12-/14, a disintegrin and metalloprotease (ADAM)-17, tissue inhibitor of metalloprotease (TIMP)-1/-3 were increased, whereas MMP-11/-16/-24 and TIMP-2/-4 were lowered compared to native DA hearts. With respect to these untreated allografts, CsA lowered mRNA levels of MMP-7, TIMP-1/-3 (TIMP-2/-4 remained relatively low) and ADAM17, but augmented mRNA levels of MMP-11/-16/-23 and of many ECM genes. Immunohistology showed increased staining of MMP-2 in acute rejection (AR). Overall MMP activity was augmented in both transplanted groups, but CsA reduced MMP-9 activity and MMP-14 production. Taken together, MMP and TIMP were upregulated during acute AR. CsA ameliorated histology of rejection but showed potential pro-fibrotic effects. Thus, MMP and TIMP may play a role in acute cardiac allograft rejection, and beneficial modification of the MMP-ECM balance requires interventions beyond CsA.
Resumo:
Synthetic agonists of TLR9 containing novel DNA structures and R'pG (wherein R=1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine) motifs, referred to as immune modulatory oligonucleotides (IMOs), have been shown to stimulate T(H)-1-type-immune responses and potently reverse allergen-induced T(H)-2 responses to T(H)-1 responses in vitro and in vivo in mice. In order to investigate the immunomodulatory potential of IMOs in dogs, canine peripheral blood mononuclear cells (PBMC) from healthy dogs were stimulated with three different IMOs and a control IMO, alone or in combination with concanavalin A (ConA). Lipopolysaccharide (LPS) was used as a positive control for B lymphocyte activation. Carboxyfluorescein diacetate succinimidyl ester and phenotype staining was used to tag proliferating T and B lymphocytes (CD5(+) and CD21(+)) by flow cytometry. Real-time PCR and ELISA were processed to assay cytokine production of IFN-gamma, IL-10, TGF-beta, IL-6 and IL-10. Like LPS, IMOs alone induced neither proliferation of CD5(+) T cells nor CD21(+) B cells, but both LPS and IMO had the capacity to co-stimulate ConA and induced proliferation of B cells. In combination with ConA, one of the IMOs (IMO1) also induced proliferation of T cells. IMO1 also significantly enhanced the expression of IFN-gamma on the mRNA and protein level in canine PBMC, whereas expression of IL-10, TGF-beta and IL-4 mRNAs was not induced by any of the IMOs. These results indicate that in canine PBMC from healthy dogs, IMO1 was able to induce a T(H)-1 immune response including T- and B-cell proliferation.
Resumo:
Recent research in cognitive sciences shows a growing interest in spatial-numerical associations. The horizontal SNARC (spatial-numerical association of response codes) effect is defined by faster left-sided responses to small numbers and faster right-sided responses to large numbers in a parity judgment task. In this study we investigated whether there is also a SNARC effect for upper and lower responses. The grounded cognition approach suggests that the universal experience of "more is up" serves as a robust frame of reference for vertical number representation. In line with this view, lower hand responses to small numbers were faster than to large numbers (Experiment 1). Interestingly, the vertical SNARC effect reversed when the lower responses were given by foot instead of the hand (Experiments 2, 3, and 4). We found faster upper (hand) responses to small numbers and faster lower (foot) responses to large numbers. Additional experiments showed that spatial factors cannot account for the reversal of the vertical SNARC effect (Experiments 4 and 5). Our results question the view of "more is up" as a robust frame of reference for spatial-numerical associations. We discuss our results within a hierarchical framework of numerical cognition and point to a possible link between effectors and number representation.
Resumo:
Mutations in the human presenilin genes PS1 and PS2 cause early-onset Alzheimer’s disease. Studies in Caenorhabditis elegans and in mice indicate that one function of presenilin genes is to facilitate Notch-pathway signaling. Notably, mutations in the C. elegans presenilin gene sel-12 reduce signaling through an activated version of the Notch receptor LIN-12. To investigate the function of a second C. elegans presenilin gene hop-1 and to examine possible genetic interactions between hop-1 and sel-12, we used a reverse genetic strategy to isolate deletion alleles of both loci. Animals bearing both hop-1 and sel-12 deletions displayed new phenotypes not observed in animals bearing either single deletion. These new phenotypes—germ-line proliferation defects, maternal-effect embryonic lethality, and somatic gonad defects—resemble those resulting from a reduction in signaling through the C. elegans Notch receptors GLP-1 and LIN-12. Thus SEL-12 and HOP-1 appear to function redundantly in promoting Notch-pathway signaling. Phenotypic analyses of hop-1 and sel-12 single and double mutant animals suggest that sel-12 provides more presenilin function than does hop-1.
Resumo:
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of the HIV type 1 (HIV-1) reverse transcriptase (RT). Yeast grown in the presence of many of these drugs exhibited dramatically increased association of the p66 and p51 subunits of the HIV-1 RT as reported by a yeast two-hybrid assay. The enhancement required drug binding by RT; introduction of a drug-resistance mutation into the p66 construct negated the enhancement effect. The drugs could also induce heterodimerization of dimerization defective mutants. Coimmunoprecipitation of RT subunits from yeast lysates confirmed the induction of heterodimer formation by the drugs. In vitro-binding studies indicate that NNRTIs can bind tightly to p66 but not p51 and then mediate subsequent heterodimerization. This study demonstrates an unexpected effect of NNRTIs on the assembly of RT subunits.
Resumo:
HIV-1 replication requires the translocation of viral genome into the nucleus of a target cell. We recently reported the synthesis of an arylene bis(methyl ketone) compound (CNI-H0294) that inhibits nuclear targeting of the HIV-1 genome and thus HIV-1 replication in monocyte cultures. Here we demonstrate that CNI-H0294 inhibits nuclear targeting of HIV-1-derived preintegration complexes by inactivating the nuclear localization sequence of the HIV-1 matrix antigen in a reaction that absolutely requires reverse transcriptase. This drug/reverse transcriptase interaction defines the specificity of its antiviral effect and is most likely mediated by the pyrimidine side-chain of CNI-H0294. After binding to reverse transcriptase, the carbonyl groups of CNI-H0294 react with the nuclear localization sequence of matrix antigen and prevent its binding to karyopherin alpha, the cellular receptor for nuclear localization sequences that carries proteins into the nucleus. Our results provide a basis for the development of a novel class of compounds that inhibit nuclear translocation and that can, in principle, be modified to target specific infectious agents.
Resumo:
The genetic study of RNA viruses is greatly facilitated by the availability of infectious cDNA clones. However, their construction has often been difficult. While exploring ways to simplify the construction of infectious clones, we have successfully modified and applied the newly described technique of "long PCR" to the synthesis of a full-length DNA amplicon from the RNA of a cytopathogenic mutant (HM 175/24a) of the hepatitis A virus (HAV). Primers were synthesized to match the two extremities of the HAV genome. The antisense primer, homologous to the 3' end, was used in both the reverse transcription (RT) and the PCR steps. With these primers we reproducibly obtained a full-length amplicon of approximately 7.5 kb. Further, since we engineered a T7 promoter in the sense primer, RNA could be transcribed directly from the amplicon with T7 RNA polymerase. Following transfection of cultured fetal rhesus kidney cells with the transcription mixture containing both the HAV cDNA and the transcribed RNA, replicating HAV was detected by immunofluorescence microscopy and, following passage to other cell cultures, by focus formation. The recovered virus displayed the cytopathic effect and large plaque phenotype typical of the original virus; this result highlights the fidelity of the modified long reverse transcription-PCR procedure and demonstrates the potential of this method for providing cDNAs of viral genomes and simplifying the construction of infectious clones.
Resumo:
A combination of transient kinetic and equilibrium titration methods has been used to show that both primer/template and nucleotide binding to human immunodeficiency virus type 1 (HIV-1) reverse transcriptase are two-step processes. In both cases, after initial formation of relatively weakly bound states, isomerization reactions lead to tightly bound states. In the case of deoxynucleotide binding to the reverse transcriptase-primer/template complex, the second step in the interaction is rate-limiting in the overall reaction during processive polymerization. Discrimination against incorrect nucleotides occurs both in the initial weak binding and in the second step but is purely kinetic in the second step (as opposed to thermodynamic in the first step). Nonnucleoside inhibitors have a relatively small effect on nucleotide-binding steps (overall affinity is reduced by a factor of ca. 10), while the affinity of the primer/template duplex is increased by at least a factor of 10. The major effect of nonnucleoside inhibitors is on the chemical step (nucleotide transfer).
Resumo:
Retroviruses are known to mutate at high rates. An important source of genetic variability is recombination taking place during reverse transcription of internal regions of the two genomic RNAs. We have designed an in vitro model system, involving genetic markers carried on two RNA templates, to allow a search for individual recombination events and to score their frequency of occurrence. We show that Moloney murine leukemia virus reverse transcriptase alone promotes homologous recombination efficiently. While RNA concentration has little effect on recombination frequency, there is a clear correlation between the amount of reverse transcriptase used in the assay and the extent of recombination observed. Under conditions mimicking the in vivo situation, a rate compatible with ex vivo estimates has been obtained.