939 resultados para Return-based pricing kernel


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many kernel classifier construction algorithms adopt classification accuracy as performance metrics in model evaluation. Moreover, equal weighting is often applied to each data sample in parameter estimation. These modeling practices often become problematic if the data sets are imbalanced. We present a kernel classifier construction algorithm using orthogonal forward selection (OFS) in order to optimize the model generalization for imbalanced two-class data sets. This kernel classifier identification algorithm is based on a new regularized orthogonal weighted least squares (ROWLS) estimator and the model selection criterion of maximal leave-one-out area under curve (LOO-AUC) of the receiver operating characteristics (ROCs). It is shown that, owing to the orthogonalization procedure, the LOO-AUC can be calculated via an analytic formula based on the new regularized orthogonal weighted least squares parameter estimator, without actually splitting the estimation data set. The proposed algorithm can achieve minimal computational expense via a set of forward recursive updating formula in searching model terms with maximal incremental LOO-AUC value. Numerical examples are used to demonstrate the efficacy of the algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A sparse kernel density estimator is derived based on the zero-norm constraint, in which the zero-norm of the kernel weights is incorporated to enhance model sparsity. The classical Parzen window estimate is adopted as the desired response for density estimation, and an approximate function of the zero-norm is used for achieving mathemtical tractability and algorithmic efficiency. Under the mild condition of the positive definite design matrix, the kernel weights of the proposed density estimator based on the zero-norm approximation can be obtained using the multiplicative nonnegative quadratic programming algorithm. Using the -optimality based selection algorithm as the preprocessing to select a small significant subset design matrix, the proposed zero-norm based approach offers an effective means for constructing very sparse kernel density estimates with excellent generalisation performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper derives an efficient algorithm for constructing sparse kernel density (SKD) estimates. The algorithm first selects a very small subset of significant kernels using an orthogonal forward regression (OFR) procedure based on the D-optimality experimental design criterion. The weights of the resulting sparse kernel model are then calculated using a modified multiplicative nonnegative quadratic programming algorithm. Unlike most of the SKD estimators, the proposed D-optimality regression approach is an unsupervised construction algorithm and it does not require an empirical desired response for the kernel selection task. The strength of the D-optimality OFR is owing to the fact that the algorithm automatically selects a small subset of the most significant kernels related to the largest eigenvalues of the kernel design matrix, which counts for the most energy of the kernel training data, and this also guarantees the most accurate kernel weight estimate. The proposed method is also computationally attractive, in comparison with many existing SKD construction algorithms. Extensive numerical investigation demonstrates the ability of this regression-based approach to efficiently construct a very sparse kernel density estimate with excellent test accuracy, and our results show that the proposed method compares favourably with other existing sparse methods, in terms of test accuracy, model sparsity and complexity, for constructing kernel density estimates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multi-factor approaches to analysis of real estate returns have, since the pioneering work of Chan, Hendershott and Sanders (1990), emphasised a macro-variables approach in preference to the latent factor approach that formed the original basis of the arbitrage pricing theory. With increasing use of high frequency data and trading strategies and with a growing emphasis on the risks of extreme events, the macro-variable procedure has some deficiencies. This paper explores a third way, with the use of an alternative to the standard principal components approach – independent components analysis (ICA). ICA seeks higher moment independence and maximises in relation to a chosen risk parameter. We apply an ICA based on kurtosis maximisation to weekly US REIT data using a kurtosis maximising algorithm. The results show that ICA is successful in capturing the kurtosis characteristics of REIT returns, offering possibilities for the development of risk management strategies that are sensitive to extreme events and tail distributions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To quantify to what extent the new registration method, DARTEL (Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra), may reduce the smoothing kernel width required and investigate the minimum group size necessary for voxel-based morphometry (VBM) studies. Materials and Methods: A simulated atrophy approach was employed to explore the role of smoothing kernel, group size, and their interactions on VBM detection accuracy. Group sizes of 10, 15, 25, and 50 were compared for kernels between 0–12 mm. Results: A smoothing kernel of 6 mm achieved the highest atrophy detection accuracy for groups with 50 participants and 8–10 mm for the groups of 25 at P < 0.05 with familywise correction. The results further demonstrated that a group size of 25 was the lower limit when two different groups of participants were compared, whereas a group size of 15 was the minimum for longitudinal comparisons but at P < 0.05 with false discovery rate correction. Conclusion: Our data confirmed DARTEL-based VBM generally benefits from smaller kernels and different kernels perform best for different group sizes with a tendency of smaller kernels for larger groups. Importantly, the kernel selection was also affected by the threshold applied. This highlighted that the choice of kernel in relation to group size should be considered with care.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article examines the role of idiosyncratic volatility in explaining the cross-sectional variation of size- and value-sorted portfolio returns. We show that the premium for bearing idiosyncratic volatility varies inversely with the number of stocks included in the portfolios. This conclusion is robust within various multifactor models based on size, value, past performance, liquidity and total volatility and also holds within an ICAPM specification of the risk–return relationship. Our findings thus indicate that investors demand an additional return for bearing the idiosyncratic volatility of poorly-diversified portfolios.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

: In a model of a nancial market with an atomless continuum of assets, we give a precise and rigorous meaning to the intuitive idea of a \well-diversi ed" portfolio and to a notion of \exact arbitrage". We show this notion to be necessary and su cient for an APT pricing formula to hold, to be strictly weaker than the more conventional notion of \asymptotic arbitrage", and to have novel implications for the continuity of the cost functional as well as for various versions of APT asset pricing. We further justify the idealized measure-theoretic setting in terms of a pricing formula based on \essential" risk, one of the three components of a tri-variate decomposition of an asset's rate of return, and based on a speci c index portfolio constructed from endogenously extracted factors and factor loadings. Our choice of factors is also shown to satisfy an optimality property that the rst m factors always provide the best approximation. We illustrate how the concepts and results translate to markets with a large but nite number of assets, and relate to previous work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In my work I derive closed-form pricing formulas for volatility based options by suitably approximating the volatility process risk-neutral density function. I exploit and adapt the idea, which stands behind popular techniques already employed in the context of equity options such as Edgeworth and Gram-Charlier expansions, of approximating the underlying process as a sum of some particular polynomials weighted by a kernel, which is typically a Gaussian distribution. I propose instead a Gamma kernel to adapt the methodology to the context of volatility options. VIX vanilla options closed-form pricing formulas are derived and their accuracy is tested for the Heston model (1993) as well as for the jump-diffusion SVJJ model proposed by Duffie et al. (2000).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a kernel density correlation based nonrigid point set matching method and shows its application in statistical model based 2D/3D reconstruction of a scaled, patient-specific model from an un-calibrated x-ray radiograph. In this method, both the reference point set and the floating point set are first represented using kernel density estimates. A correlation measure between these two kernel density estimates is then optimized to find a displacement field such that the floating point set is moved to the reference point set. Regularizations based on the overall deformation energy and the motion smoothness energy are used to constraint the displacement field for a robust point set matching. Incorporating this non-rigid point set matching method into a statistical model based 2D/3D reconstruction framework, we can reconstruct a scaled, patient-specific model from noisy edge points that are extracted directly from the x-ray radiograph by an edge detector. Our experiment conducted on datasets of two patients and six cadavers demonstrates a mean reconstruction error of 1.9 mm

Relevância:

40.00% 40.00%

Publicador: