668 resultados para Restrained Occupants.
Resumo:
Despite the ongoing debate surrounding climate change, sustainability is increasingly a key consideration for building owners and tenants with the ‘triple bottom line’ as desired outcomes. The triangulated social, economic and environmental goals of sustainability are now the mantra of many businesses. While much has been written of the benefits of green buildings to its occupants, comparatively fewer studies have been devoted to investigating the perceived drawbacks and measures to improve the social sustainability factor, i.e., user satisfaction. Therefore, the purpose of this paper is to consider the impacts of green buildings on its occupants by drawing together past empirical findings and summarizing the results. In addition, the paper will also present a case study of the Institute of Sustainable Development and Architecture, which is Australia’s first 6-green star, rated educational building. Through these methods, the paper will identify gaps between green building performance and user satisfaction. Thereafter, it will introduce a social sustainability framework that seeks to improve the social performance of green buildings. The 6-P model is a holistic framework targeting the following factors that can influence user satisfaction of green buildings. These factors are: public perception, price, policies, psychological, physical and personal.
Resumo:
Unsteady natural convection inside a triangular cavity subject to a non-instantaneous heating on the inclined walls in the form of an imposed temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the flow from start-up to a steady-state has been described based on scaling analyses and direct numerical simulations. The ramp temperature has been chosen in such a way that the boundary layer is reached a quasi-steady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness, then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently. It is seen that the shape of many houses are isosceles triangular cross-section. The heat transfer process through the roof of the attic-shaped space should be well understood. Because, in the building energy, one of the most important objectives for design and construction of houses is to provide thermal comfort for occupants. Moreover, in the present energy-conscious society it is also a requirement for houses to be energy efficient, i.e. the energy consumption for heating or air-conditioning houses must be minimized.
Resumo:
This paper presents a review of studies on natural convection heat transfer in the triangular enclosure namely, in attic-shaped space. Much research activity has been devoted to this topic over the last three decades with a view to providing thermal comfort to the occupants in attic-shaped buildings and to minimising the energy costs associated with heating and air-conditioning. Two basic thermal boundary conditions of attic are considered to represent hot and cold climates or day and night time. This paper also reports on a significant number of studies which have been performed recently on other topics related to the attic space, for example, attics subject to localized heating and attics filled with porous media.
Resumo:
Objective Harassment from motorists is a major constraint on cycling that has been under-researched. We examined incidence and correlates of harassment of cyclists. Methods Cyclists in Queensland, Australia were surveyed in 2009 about their experiences of harassment while cycling, from motor vehicle occupants. Respondents also indicated the forms of harassment they experienced. Logistic regression modeling was used to examine gender and other correlates of harassment. Results Of 1830 respondents, 76% of men and 72% of women reported harassment in the previous 12 months. The most reported forms of harassment were driving too close (66%), shouting abuse (63%), and making obscene gestures/sexual harassment (45%). Older age, overweight/obesity, less cycling experience (< 2 years) and less frequent cycling (< 3 days/week) were associated with less likelihood of harassment, while living in highly advantaged areas (SEIFA deciles 8 or 9), cycling for recreation, and cycling for competition were associated with increased likelihood of harassment. Gender was not associated with reports of harassment. Conclusions Efforts to decrease harassment should include a closer examination of the circumstances that give rise to harassment, as well as fostering road environments and driver attitudes and behaviors that recognize that cyclists are legitimate road users.
Resumo:
QUT's Centre for Subtropical Design (CSD) partnered with a major developer to bring together some of Brisbane’s most experienced and creative architects and designers in a two-day intensive design charrette to propose innovative design strategies for naturally-ventilated high rise residential buildings. An inner-urban renewal site in Queensland’s capital city Brisbane gave four multi-disciplinary teams the opportunity to address a raft of issues that developers and consultants will confront more and more in the future in warm humid climates. The quest to release apartment dwellers from dependence on energy-hungry air-conditioning and artificial lighting was central to the design brief for the towers. Mentored by Richard Hassell of WOHA, the creative teams focussed on climate-responsive design principles for passive climate control including orientation, cross-ventilation and outdoor living in order to reduce greenhouse gas emissions and offset occupants’ rising energy costs. This article discusses how outcomes of the charrette take their cue from the city’s subtropical climate and demonstrate how high-density high-rise living can be attractive, affordable and sustainable through positive engagement with the subtropical climate’s natural attributes.
Resumo:
Current urban development in South East Queensland (SEQ) is impacted by a number of factors: growth and sprawl eroding subtropical character and identity; changing demographics and housing needs; lack of developable land; rising transport costs; diminishing fresh water supply; high energy consumption; and generic building designs which ignore local climate, landscape and lifestyle conditions. The Subtropical Row House project sought to research ‘best practice’ planning and design for contemporary and future needs for urban development in SEQ, and stimulate higher-density housing responses that achieve sustainable, low-energy and low water outcomes and support subtropical character and identity by developing a workable new typology for homes that the local market can adopt. The methodology was that of charrette, an established methodology in architecture and design. Four leading Queensland architectural firms were invited to form multidisciplinary creative teams. During the two-day charrette, the teams visited a selected greenfield site, defined the problems and issues, developed ideas and solutions, and benchmarked performance of designs using the Australian Green Building Council’s Pilot Green Star Multi-Unit residential tool. Each of the four resulting designs simultaneously express a positive relationship with climate and place by demonstrating: suitability for the subtropical climate; flexibility for a diversity of households; integrated building/site/vegetation strategies; market appeal to occupants and developers; affordability in operation; constructability by ‘domestic’ builders; and reduced energy, water and wastage. The project was awarded a Regional Commendation by the Australian Institute of Architects.
Resumo:
Acknowledgement that many children in Australia travel in restraints that do not offer them the best protection has led to recent changes in legislation such that the type of restraint for children under 7 years is now specified. This paper reports the results of two studies (observational; focus group/ survey) carried out in the state of Queensland to evaluate the effectiveness of these changes to the legislation. Observations suggested that almost all of the children estimated as aged 0-12 years were restrained (95%). Analysis of the type of restraint used for target-aged children (0-6 year olds) suggests that the proportion using an age-appropriate restraint has increased by an estimated 7% since enactment of the legislation. However, around 1 in 4 children estimated as aged under 7 years were using restraints too large for good fit. Results from the survey and focus group suggested parents were supportive of the changes in legislation. Non-Indigenous parents agreed that the changes had been necessary, were effective at getting children into the right restraints, were easy to understand as well as making it clear what restraint to use with children. Moreover, they did not see the legislation as too complicated or too hard to comply with. Indigenous parents who participated in a focus group also regarded the legislation as improving children’s safety. However, they identified the cost of restraints as an important barrier to compliance. In summary, the legislation appears to have had a positive effect on compliance levels and on raising parental awareness of the need to restrain children child-specific restraints for longer. However, it would seem that an important minority of parents transition their children into larger restraints too early for optimal protection. Intervention efforts should aim to better inform these parents about appropriate ages for transition, especially from forward facing childseats. This could potentially be through use of other important transitions that occur at the same age, such as starting school. The small proportion of parents who do not restrain their children at all are also an important community sector to target. Finally, obtaining restraints presents a significant barrier to compliance for parents on limited incomes and interventions are needed to address this.
Resumo:
Seat pressure is known as a major factor of seat comfort in vehicles. In passenger vehicles, there is lacking research into the seat comfort of rear seat occupants. As accurate seat pressure measurement requires significant effort, simulation of seat pressure is evolving as a preferred method. However, analytic methods are based on complex finite element modeling and therefore are time consuming and involve high investment. Based on accurate anthropometric measurements of 64 male subjects and outboard rear seat pressure measurements in three different passenger vehicles, this study investigates if a set of parameters derived from seat pressure mapping are sensitive enough to differentiate between different seats and whether they correlate with anthropometry in linear models. In addition to the pressure map analysis, H-Points were measured with a coordinate measurement system based on palpated body landmarks and the range of H-Point locations in the three seats is provided. It was found that for the cushion, cushion contact area and cushion front area/force could be modeled by subject anthropometry,while only seatback contact area could be modeled based on anthropometry for all three vehicles. Major differences were found between the vehicles for other parameters.
Resumo:
Observational seatbelt wearing studies are a valuable tool for obtaining up-to-date information about rates of use. Given that one quarter of vehicle occupants killed on Queensland roads in recent years were not wearing seatbelts, it is important that authorities are able to identify non-wearers and take steps to increase compliance with seatbelt laws to reduce the severity of crashes and, therefore, the road toll. An observational study of seatbelt use was conducted in metropolitan, regional and rural locations throughout Queensland in May and June, 2010. Trained observers took note of seatbelt use of all occupants of passenger vehicles, noting their gender, approximate age group, seating position, vehicle type, licence type (i.e. visible L or P plates), mobile phone use, and the date, time and location of the observation. Of 19,579 observations, 99.04% (19,391) of occupants were observed wearing seatbelts, as only 0.96% of occupants (188) were not wearing a seatbelt. There were differences in seatbelt wearing rates for a number of study variables, although most were very small. However, seatbelt wearing rates were 3.84% lower for drivers observed using a mobile phone than for those who were not. While compliance with seatbelt laws seems to be very high, it is still concerning that so few non-wearers represent a disproportionately large proportion of road fatalities and serious injuries in Queensland. Road safety authorities must therefore continue to find ways to improve seatbelt use, as small gains in wearing rates will translate into significant fatality reductions.
Resumo:
Air conditioning systems have become an integral part of many modern buildings. Proper design and operation of air conditioning systems have significant impact not only on the energy use and greenhouse gas emissions from the buildings, but also on the thermal comfort and productivity of the occupants. In this paper, the purpose and need of installing air conditioning systems is first introduced. The methods used for the classification of air conditioning systems are then presented. This is followed by a discussion on the pros and cons of each type of the air conditioning systems, including both common and new air conditioning technologies. The procedures used to design air conditioning systems are also outlined, and the implications of air conditioning systems, including design, selection, operation and maintenance, on building energy efficiency is also discussed.
Resumo:
Cold-formed steel beams are increasingly used as floor joists and bearers in buildings. Their behaviour and moment capacities are influenced by lateral-torsional buckling when they are not laterally restrained adequately. Past research on lateral-torsional buckling has concentrated on hot-rolled steel beams. Hence a numerical study was undertaken to investigate the lateral-torsional buckling behaviour of simply supported cold-formed steel lipped channel beams subjected to uniform bending. For this purpose a finite element model was developed using ABAQUS and its accuracy was verified using available numerical and experimental results. It was then used in a detailed parametric study to simulate the lateral-torsional buckling behaviour and capacity of cold-formed steel beams under varying conditions. The moment capacity results were compared with the predictions from the current design rules in many cold-formed steel codes and suitable recommendations were made. European design rules were found to be conservative while Australian/New Zealand and North American design rules were unconservative. Hence the moment capacity design equations in these codes were modified in this paper based on the available finite element analysis results. This paper presents the details of the parametric study, recommendations to current design rules and the new design rules proposed in this research for lateral-torsional buckling of cold-formed steel lipped channel beams.
Resumo:
Heat transfer through an attic space into or out of buildings is an important issue for attic-shaped houses in both hot and cold climates. One of the important objectives for design and construction of houses is to provide thermal comfort for occupants. In the present energy-conscious society, it is also a requirement for houses to be energy efficient, i.e. the energy consumption for heating or air-conditioning houses must be minimized. Relevant to these objectives, research into heat transfer in attics has been conducted for about three decades. The transient behaviour of an attic space is directly relevant to our daily life. Certain periods of the day or night may be considered as having a constant ambient temperature (e.g. during 11am - 2pm or 11pm - 2am). However, at other times during the day or night the ambient temperature changes with time (e.g. between 5am - 9am or 5pm - 9pm). Therefore, the analysis of steady state solution is not sufficient to describe the fluid flow and heat transfer in the attic space. The discussion of the transient development of the boundary is required. A theoretical understanding of the transient behaviour of the flow in the enclosure is performed through scaling analysis for sudden and ramp heating conditions. A proper identification of the timescales, the velocity and the thickness relevant to the flow that develops inside the cavity makes it possible to predict theoretically the basic flow features that will survive once the thermal flow in the enclosure reaches a steady state. Those scaling predictions have been verified by a series of numerical simulations.
Resumo:
Retrofit projects are different from newly-built projects in many respects. A retrofit project involves an existing building, which imposes constraints on the owners, designers, operators and constructors throughout the project process. Retrofit projects are risky, complex, less predictable and difficult to be well planned, which need greater coordination. For office building retrofit project, further restrictions will apply as these buildings often locate in CBD areas and most have to remain operational during the progression of project work. Issues such as site space, material storage and handling, noise and dust, need to be considered and well addressed. In this context, waste management is even more challenging with small spaces for waste handling, uncertainties in waste control, and impact of waste management activities on project delivery and building occupants. Current literatures on waste management in office building retrofit projects focus on increasing waste recovery rate based on project planning, monitoring and stakeholders’ collaboration. However, previous research has not produced knowledge of understanding the particular retrofit processes and their impact on waste generation and management. This paper discusses the interim results of a continuing research on new strategies for waste management in office building retrofit projects. Firstly based on the literature review, it summarizes the unique characteristics of office building retrofit projects and their influence on waste management. An assumption on waste management strategies is formed. Semi-structured interviews were conducted towards industry practitioners and findings are then presented in the paper. The assumption of the research was validated in the interviews from the opinions and experiences of the respondents. Finally the research develops a process model for waste management in office building retrofit projects. It introduces two different waste management strategies. For the dismantling phase, waste is generated fast along with the work progress, so integrated planning for project delivery and waste generation is needed in order to organize prompt handling and treatment. For the fit-out phase, the work is similar as new construction. Factors which are particularly linked to generating waste on site need to be controlled and monitored. Continuing research in this space will help improve the practice of waste management in office building retrofit projects. The new strategies will help promote the practicality of project waste planning and management and stakeholders’ capability of coordinating waste management and project delivery.
Resumo:
Motorcycles are particularly vulnerable in right-angle crashes at signalized intersections. The objective of this study is to explore how variations in roadway characteristics, environmental factors, traffic factors, maneuver types, human factors as well as driver demographics influence the right-angle crash vulnerability of motorcycles at intersections. The problem is modeled using a mixed logit model with a binary choice category formulation to differentiate how an at-fault vehicle collides with a not-at-fault motorcycle in comparison to other collision types. The mixed logit formulation allows randomness in the parameters and hence takes into account the underlying heterogeneities potentially inherent in driver behavior, and other unobserved variables. A likelihood ratio test reveals that the mixed logit model is indeed better than the standard logit model. Night time riding shows a positive association with the vulnerability of motorcyclists. Moreover, motorcyclists are particularly vulnerable on single lane roads, on the curb and median lanes of multi-lane roads, and on one-way and two-way road type relative to divided-highway. Drivers who deliberately run red light as well as those who are careless towards motorcyclists especially when making turns at intersections increase the vulnerability of motorcyclists. Drivers appear more restrained when there is a passenger onboard and this has decreased the crash potential with motorcyclists. The presence of red light cameras also significantly decreases right-angle crash vulnerabilities of motorcyclists. The findings of this study would be helpful in developing more targeted countermeasures for traffic enforcement, driver/rider training and/or education, safety awareness programs to reduce the vulnerability of motorcyclists.
Resumo:
Red light cameras (RLC) have been used to reduce right-angle collisions at signalized intersections. However, the effect of RLCs on motorcycle crashes has not been well investigated. The objective of this study is to evaluate the effectiveness of RLCs on motorcycle safety in Singapore. This is done by comparing their exposure, proneness of at-fault right-angle crashes as well as the resulting right-angle collisions at RLC with those at non-RLC sites. Estimating the crash vulnerability from not-at-fault crash involvements, the study shows that with a RLC, the relative crash vulnerability or crash-involved exposure of motorcycles at right-angle crashes is reduced. Furthermore, field investigation of motorcycle maneuvers reveal that at non-RLC arms, motorcyclists usually queue beyond the stop-line, facilitating an earlier discharge and hence become more exposed to the conflicting stream. However at arms with a RLC, motorcyclists are more restrained to avoid activating the RLC and hence become less exposed to conflicting traffic during the initial period of the green. The study also shows that in right-angle collisions, the proneness of at-fault crashes of motorcycles is lowest among all vehicle types. Hence motorcycles are more likely to be victims than the responsible parties in right-angle crashes. RLCs have also been found to be very effective in reducing at-fault crash involvements of other vehicle types which may implicate exposed motorcycles in the conflicting stream. Taking all these into account, the presence of RLCs should significantly reduce the vulnerability of motorcycles at signalized intersections.