961 resultados para Respiratory aspiration
Resumo:
Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.
Resumo:
AIMS: To identify the respiratory viruses that are present among foals in New Zealand and to establish the age at which foals first become infected with these viruses. METHODS: Foals were recruited to the study in October/ November 1995 at the age of 1 month (Group A) or in March/ April 1996 at the age of 4-6 months (Groups B and C). Nasal swabs and blood samples were collected at monthly intervals. Nasal swabs and peripheral blood leucocytes (PBL) harvested from heparinised blood samples were used for virus isolation; serum harvested from whole-blood samples was used for serological testing for the presence of antibodies against equine herpesvirus (EHV)-1 or -4, equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3). Twelve foals were sampled until December 1996; the remaining 19 foals were lost from the study at various times prior to this date. RESULTS: The only viruses isolated were EHV 2 and EHV 5. EHV 2 was isolated from 155/157 PBL samples collected during the period of study and from 40/172 nasal swabs collected from 18 foals. All isolations from nasal swabs, except one, were made over a period of 2-4 months from January to April (Group A), March to April (Group B) or May, to July (Group C). EHV 5 was isolated from either PBL, nasal swabs, or both, from 15 foals on 32 occasions. All foals were positive for antibodies to EHV 1 or EHV 4, as tested by serum neutralisation (SN), on at least one sampling occasion and all but one were positive for EHV 1 antibodies measured by enzyme-linked immunosorbent assay (ELISA) on at least one sampling occasion. Recent EHV 1 infection was evident at least once during the period of study in 18/23 (78%) foals for which at least two samples were collected. SN antibodies to ERBV were evident in 19/23 (83%) foals on at least one sampling occasion and 15/23 foals showed evidence of seroconversion to ERBV Antibodies to ERAV were only detected in serum samples collected from foals in Group A and probably represented maternally-derived antibodies. Haemagglutination inhibition (HI) antibody titres greater than or equal to 1:10 to EAdV-1 were evident in 21/23 (91%) foals on at least one sampling occasion and 16/23 foals showed serological evidence of recent EAdV-1 infection. None of the 67 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. There was no clear association between infection with any of the viruses isolated or tested for and the presence of overt clinical signs of respiratory disease. CONCLUSIONS: There was serological and/or virological evidence that EHV-1, EHV-2, EHV-5, EAdV-1 and ERBV infections were present among foals in New Zealand. EHV-2 infection was first detected in foals as young as 3 months of age. The isolation of EHV-2 from nasal swabs preceded serological evidence of infection with other respiratory viruses, suggesting that EHV-2 may predispose foals to other viral infections.
Resumo:
AIM: To identify viruses associated with respiratory disease in young horses in New Zealand. METHODS: Nasal swabs and blood samples were collected from 45 foals or horses from five separate outbreaks of respiratory disease that occurred in New Zealand in 1996, and from 37 yearlings at the time of the annual yearling sales in January that same year. Virus isolation from nasal swabs and peripheral blood leukocytes (PBL) was undertaken and serum samples were tested for antibodies against equine herpesviruses (EHV-1, EHV-2, EHV-4 and EHV-5), equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3). RESULTS: Viruses were isolated from 24/94 (26%) nasal swab samples and from 77/80 (96%) PBL samples collected from both healthy horses and horses showing clinical signs of respiratory disease. All isolates were identified as EHV-2, EHV-4, EHV-5 or untyped EHV Of the horses and foals tested, 59/82 (72%) were positive for EHV-1 and/or EHV-4 serum neutralising (SN) antibody on at least one sampling occasion, 52/82 (63%) for EHV-1-specific antibody tested by enzyme-linked immunosorbent assay (ELISA), 10/80 (13%) for ERAV SN antibody, 60/80 (75%) for ERBV SN antibody, and 42/80 (53%) for haemagglutination inhibition (HI) antibody to EAdV-1. None of the 64 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. Evidence of infection with all viruses tested was detected in both healthy horses and in horses showing clinical signs of respiratory disease. Recent EHV 2 infection was associated with the development of signs of respiratory disease among yearlings [relative risk (RR) = 2.67, 95% CI = 1.59-4.47, p = 0.0171]. CONCLUSIONS: Of the equine respiratory viruses detected in horses in New Zealand during this study, EHV 2 was most likely to be associated with respiratory disease. However, factors other than viral infection are probably important in the development of clinical signs of disease.
Resumo:
1. The present brief review covers some novel aspects of integration between respiration and movement of the body. 2. There are potent viscerosomatic reflexes in animals involving small-diameter pulmonary afferents that, when excited, would limit exercise. However, recent studies using lobeline injections to excite pulmonary afferents in awake humans suggest that there is no evoked reflex motoneuronal inhibition. Instead, the noxious respiratory sensations generated by the vagal afferents may be crucial in the decision to stop exercise. 3. While respiratory movements may affect limb movements, the control of the trunk and limbs can involve interaction (and even interference) with key respiratory muscles, such as the diaphragm. Recent studies have revealed that not only does the diaphragm receive feed-forward drive prior to some limb movements, but that it also contracts both phasically and tonically during repetitive limb movements. 4. Thus, challenges to posture can indirectly challenge ventilation, while coordinated diaphragm contraction may contribute to control of the trunk.
Resumo:
Respiration is altered during different stages of the sleep-wake cycle. We review the contribution of cholinergic systems to this alteration, with particular reference to the role of muscarinic acetylcholine receptors (MAchRs) during rapid eye movement (REM) sleep. Available evidence demonstrates that MAchRs have potent excitatory effects on medullary respiratory neurones and respiratory motoneurones, and are likely to contribute to changes in central chemosensitive drive to the respiratory control system. These effects are likely to be most prominent during REM sleep, when cholinergic brainstem neurones show peak activity levels. It is possible that MAchR dysfunction is involved in sleep-disordered breathing, Such as obstructive sleep apnea. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The authors investigated the effect of manual hyperinflation (MHI) with set parameters applied to patients on mechanical ventilation on hemodynamics, respiratory mechanics, and gas exchange. Sixteen critically ill patients post-septic shock, with acute lung injury, were studied. Heart rate, arterial pressure, and mean pulmonary artery pressure were recorded every minute. pulmonary artery occlusion pressure, cardiac output, arterial blood gases, and dynamic compliance (C-dyn) were recorded pre- and post-MHI. From this, systemic vascular resistance index (SVRI), cardiac index, oxygen delivery, and partial pressure of oxygen:fraction of inspired oxygen (PaO2:FiO(2)) ratio were calculated. There were significant increases in SVRI (P < 0.05) post-MHI and diastolic arterial pressure (P < 0.01)during MHI. C-dyn increased post-MHI (P < 0.01) and was sustained at 20 minutes post-MHI (P < 0.01). Subjects with an intrapulmonary cause of lung disease had a significant decrease (P = 0.02) in PaO2:FiO(2), and those with extrapulmonary causes of lung disease had a significant increase (P < 0.001) in PaO2:FiO(2) post-MHI. In critically ill patients, MHI resulted in an improvement in lung mechanics and an improvement in gas exchange in patients with lung disease due to extrapulmonary events and did not result in impairment of the cardiovascular system.
Resumo:
This paper presents an analysis of personal respirable coal dust measurements recorded by the Joint Coal Board in the underground longwall mines of New South Wales from 1985 to 1999. A description of the longwall mining process is given. In the study, 11 829 measurements from 33 mines were analysed and the results given for each occupation, for seven occupational groups, for individual de-identified mines and for each year of study. The mean respirable coal dust concentration for all jobs was 1.51 mg/m(3) (SD 1.08 mg/m(3)). Only 6.9% of the measurements exceeded the Australian exposure standard of 3 mg/m(3). Published exposure-response relationships were used to predict the prevalence of progressive massive fibrosis and the mean loss of FEV1, after a working lifetime (40 years) of exposure to the mean observed concentration of 1.5 mg/m(3). Prevalences of 1.3 and 2.9% were predicted, based on data from the UK and the USA, respectively. The mean loss of FEV1 was estimated to be 73.7 ml.
Resumo:
Respiratory therapy has historically been considered the primary role of the physiotherapist in neonatal intensive care in Australia. In 2001 a survey was undertaken of all level three neonatal intensive care units in Australia to determine the role of the physiotherapist and of respiratory therapy in clinical practice. It appears that respiratory therapy is provided infrequently, with the number of infants treated per month ranging from 0 to 10 in 15 of the 20 units who provide respiratory therapy, regardless of therapist availability. The median number of respiratory treatments per month during the week was three, and on weekends it was one. Respiratory therapy was carried out by physiotherapists and nurses in 54.6% of units, by physiotherapists only in 36.4% of units, and by nurses only in the remaining 9% of units surveyed. There was also a diminution of the role of respiratory therapy in the extubation of premature infants. A review of the literature shows that overall the use of respiratory therapy reflects current evidence. The question remains whether it is possible to maintain the competency of staff and justify the cost of training in the current healthcare economic climate. It seems probable that the future role of physiotherapists in neonatal intensive care unit may be in the facilitation of optimal neurological development of surviving very low birth weight infants.
Resumo:
Chest clapping, vibration, and shaking were studied in 10 physiotherapists who applied these techniques on an anesthetized animal model. Hemodynamic variables (such as heart rate, blood pressure, pulmonary artery pressure, and right atrial pressure) were measured during the application of these techniques to verify claims of adverse events. In addition, expired tidal volume and peak expiratory flow rate were measured to ascertain effects of these techniques. Physiotherapists in this study applied chest clapping at a rate of 6.2 +/- 0.9 Hz, vibration at 10.5 +/- 2.3 Hz, and shaking at 6.2 +/- 2.3 Hz. With the use of these rates, esophageal pressure swings of 8.8 +/- 5.0, 0.7 +/- 0.3, and 1.4 +/- 0.7 mmHg resulted from clapping, vibration, and shaking respectively. Variability in rates and forces generated by these techniques was 80% of variance in shaking force (P = 0.003). Application of these techniques by physiotherapists was found to have no significant effects on hemodynamic and most ventilatory variables in this study. From this study, we conclude that chest clapping, vibration, and shaking 1) can be consistently performed by physiotherapists; 2) are significantly related to physiotherapists' characteristics, particularly clinical experience; and 3) caused no significant hemodynamic effects.
Resumo:
China holds the key to solving many questions crucial to global control of severe acute respiratory syndrome (SARS). The disease appears to have originated in Guangdong Province, and the causative agent, SARS coronavirus, is likely to have originated from an animal host, perhaps sold in public markets. Epidemiologic findings, integral to defining an animal-human linkage, may be confirmed by laboratory studies; once animal host(s) are confirmed, interventions may be needed to prevent further animal-to-human transmission. Community seroprevalence studies may help determine the basis for the decline in disease incidence in Guangdong Province after February 2002. China will also be able to contribute key data about how the causative agent is transmitted and how it is evolving, as well as identifying pivotal factors influencing disease outcome.
Resumo:
Both the gaseous and the particulate phases of tobacco and cannabis smoke contain a similar range of harmful chemicals. However, differing patterns of inhalation mean that smoking a 'joint' of cannabis results in exposure to significantly greater amounts of combusted material than with a tobacco cigarette. The histopathological effects of cannabis smoke exposure include changes consistent with acute and chronic bronchitis. Cellular dysplasia has also been observed, suggesting that, like tobacco smoke, cannabis exposure has the potential to cause malignancy. These features are consistent with the clinical presentation. Symptoms of cough and early morning sputum production are common (20-25%) even in young individuals who smoke cannabis alone. Almost all studies indicate that the effects of cannabis and tobacco smoking are additive and independent. Public health education should dispel the myth that cannabis smoking is relatively safe by highlighting that the adverse respiratory effects of smoking cannabis are similar to those of smoking tobacco, even although it remains to be confirmed that smoking cannabis alone leads to the development of chronic lung disease.
Resumo:
Posteroanterior stiffness of the lumbar spine is influenced by factors, including trunk muscle activity and intra-abdominal pressure (IAP). Because these factors vary with breathing, this study investigated whether stiffness is modulated in a cyclical manner with respiration. A further aim was to investigate the relationship between stiffness and IAP or abdominal and paraspinal muscle activity. Stiffness was measured from force-displacement responses of a posteroanterior force applied over the spinous process of L-2 and L-4. Recordings were made of IAP and electromyographic activity from L-4/L-2 erector spinae, abdominal muscles, and chest wall. Stiffness was measured with the lung volume held at the extremes of tidal volume and at greater and lesser volumes. Stiffness at L-4 and L-2 increased above base-level values at functional residual capacity (L-2 14.9 N/mm and L-4 15.3 N/mm) with both inspiratory and expiratory efforts. The increase was related to the respiratory effort and was greatest during maximum expiration (L-2 24.9 N/mm and L-4 23.9 N/mm). The results indicate that changes in trunk muscle activity and IAP with respiratory efforts modulate spinal stiffness. In addition, the diaphragm may augment spinal stiffness via attachment of its crural fibers to the lumbar vertebrae.