886 resultados para Resonant Frequency.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biochemical agents, including bacteria and toxins, are potentially dangerous and responsible for a wide variety of diseases. Reliable detection and characterization of small samples is necessary in order to reduce and eliminate their harmful consequences. Microcantilever sensors offer a potential alternative to the state of the art due to their small size, fast response time, and the ability to operate in air and liquid environments. At present, there are several technology limitations that inhibit application of microcantilever to biochemical detection and analysis, including difficulties in conducting temperature-sensitive experiments, material inadequacy resulting in insufficient cell capture, and poor selectivity of multiple analytes. This work aims to address several of these issues by introducing microcantilevers having integrated thermal functionality and by introducing nanocrystalline diamond as new material for microcantilevers. Microcantilevers are designed, fabricated, characterized, and used for capture and detection of cells and bacteria. The first microcantilever type described in this work is a silicon cantilever having highly uniform in-plane temperature distribution. The goal is to have 100 μm square uniformly heated area that can be used for thermal characterization of films as well as to conduct chemical reactions with small amounts of material. Fabricated cantilevers can reach above 300C while maintaining temperature uniformity of 2−4%. This is an improvement of over one order of magnitude over currently available cantilevers. The second microcantilever type is a doped single crystal silicon cantilever having a thin coating of ultrananocrystalline diamond (UNCD). The primary application of such a device is in biological testing, where diamond acts as a stable, electrically isolated reaction surface while silicon layer provides controlled heating with minimum variations in temperature. This work shows that composite cantilevers of this kind are an effective platform for temperature-sensitive biological experiments, such as heat lysing and polymerase chain reaction. The rapid heat-transfer of Si-UNCD cantilever compromised the membrane of NIH 3T3 fibroblast and lysed the cell nucleus within 30 seconds. Bacteria cells, Listeria monocytogenes V7, were shown to be captured with biotinylated heat-shock protein on UNCD surface and 90% of all viable cells exhibit membrane porosity due to high heat in 15 seconds. Lastly, a sensor made solely from UNCD diamond is fabricated with the intention of being used to detect the presence of biological species by means of an integrated piezoresistor or through frequency change monitoring. Since UNCD diamond has not been previously used in piezoresistive applications, temperature-denpendent piezoresistive coefficients and gage factors are determined first. The doped UNCD exhibits a significant piezoresistive effect with gauge factor of 7.53±0.32 and a piezoresistive coefficient of 8.12×10^−12 Pa^−1 at room temperature. The piezoresistive properties of UNCD are constant over the temperature range of 25−200C. 300 μm long cantilevers have the highest sensitivity of 0.186 m-Ohm/Ohm per μm of cantilever end deflection, which is approximately half that of similarly sized silicon cantilevers. UNCD cantilever arrays were fabricated consisting of four sixteen-cantilever arrays of length 20–90 μm in addition to an eight-cantilever array of length 120 μm. Laser doppler vibrometry (LDV) measured the cantilever resonant frequency, which ranged as 218 kHz−5.14 MHz in air and 73 kHz−3.68 MHz in water. The quality factor of the cantilever was 47−151 in air and 18−45 in water. The ability to measure frequencies of the cantilever arrays opens the possibility for detection of individual bacteria by monitoring frequency shift after cell capture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Distributed generation systems must fulfill standards specifications of current harmonics injected to the grid. In order to satisfy these grid requirements, passive filters are connected between inverter and grid. This work compares the characteristic response of the traditional inductive (L) filter with the inductive-capacitive-inductive (LCL) filter. It is shown that increasing the inductance L leads to a good ripple current suppression around the inverter switching frequency. The LCL filter provides better harmonic attenuation and reduces the filter size. The main drawback is the LCL filter impedance, which is characterized by a typical resonance peak, which must be damped to avoid instability. Passive or active techniques can be used to damp the LCL resonance. To address this issue, this dissertation presents a comparison of current control for PV grid-tied inverters with L filter and LCL filter and also discuss the use of active and passive damping for different regions of resonance frequency. From the mathematical models, a design methodology of the controllers was developed and the dynamic behavior of the system operating in closed loop was investigated. To validate the studies developed during this work, experimental results are presented using a three-phase 5kW experimental platform. The main components and their functions are discussed in this work. Experimental results are given to support the theoretical analysis and to illustrate the performance of grid-connected PV inverter system. It is shown that the resonant frequency of the system, and sampling frequency can be associated in order to calculate a critical frequency, below which is essential to perform the damping of the LCL filter. Also, the experimental results show that the active buffer per virtual resistor, although with a simple development, is effective to damp the resonance of the LCL filter and allow the system to operate stable within predetermined parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Past and recent observations have shown that the local site conditions significantly affect the behavior of seismic waves and its potential to cause destructive earthquakes. Thus, seismic microzonation studies have become crucial for seismic hazard assessment, providing local soil characteristics that can help to evaluate the possible seismic effects. Among the different methods used for estimating the soil characteristics, the ones based on ambient noise measurements, such as the H/V technique, become a cheap, non-invasive and successful way for evaluating the soil properties along a studied area. In this work, ambient noise measurements were taken at 240 sites around the Doon Valley, India, in order to characterize the sediment deposits. First, the H/V analysis has been carried out to estimate the resonant frequencies along the valley. Subsequently, some of this H/V results have been inverted, using the neighborhood algorithm and the available geotechnical information, in order to provide an estimation of the S-wave velocity profiles at the studied sites. Using all these information, we have characterized the sedimentary deposits in different areas of the Doon Valley, providing the resonant frequency, the soil thickness, the mean S-wave velocity of the sediments, and the mean S-wave velocity in the uppermost 30 m.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the work described in this dissertation is the development of new wireless passive force monitoring platforms for applications in the medical field, specifically monitoring lower limb prosthetics. The developed sensors consist of stress sensitive, magnetically soft amorphous metallic glass materials. The first technology is based on magnetoelastic resonance. Specifically, when exposed to an AC excitation field along with a constant DC bias field, the magnetoelastic material mechanically vibrates, and may reaches resonance if the field frequency matches the mechanical resonant frequency of the material. The presented work illustrates that an applied loading pins portions of the strip, effectively decreasing the strip length, which results in an increase in the frequency of the resonance. The developed technology is deployed in a prototype lower limb prosthetic sleeve for monitoring forces experienced by the distal end of the residuum. This work also reports on the development of a magnetoharmonic force sensor comprised of the same material. According to the Villari effect, an applied loading to the material results in a change in the permeability of the magnetic sensor which is visualized as an increase in the higher-order harmonic fields of the material. Specifically, by applying a constant low frequency AC field and sweeping the applied DC biasing field, the higher-order harmonic components of the magnetic response can be visualized. This sensor technology was also instrumented onto a lower limb prosthetic for proof of deployment; however, the magnetoharmonic sensor illustrated complications with sensor positioning and a necessity to tailor the interface mechanics between the sensing material and the surface being monitored. The novelty of these two technologies is in their wireless passive nature which allows for long term monitoring over the life time of a given device. Additionally, the developed technologies are low cost. Recommendations for future works include improving the system for real-time monitoring, useful for data collection outside of a clinical setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. In an earlier paper we introduced a new method for determining asteroid families where families were identified in the proper frequency domain (n, g, g + s) ( where n is the mean-motion, and g and s are the secular frequencies of the longitude of pericenter and nodes, respectively), rather than in the proper element domain (a, e, sin(i)) (semi-major axis, eccentricity, and inclination). Here we improve our techniques for reliably identifying members of families that interact with nonlinear secular resonances of argument other than g or g + s and for asteroids near or in mean-motion resonant configurations. Methods. We introduce several new distance metrics in the frequency space optimal for determining the diffusion in secular resonances of argument 2g - s, 3g - s, g - s, s, and 2s. We also regularize the dependence of the g frequency as a function of the n frequency (Vesta family) or of the eccentricity e (Hansa family). Results. Our new approaches allow us to recognize as family members objects that were lost with previous methods, while keeping the advantages of the Carruba & Michtchenko (2007, A& A, 475, 1145) approach. More important, an analysis in the frequency domain permits a deeper understanding of the dynamical evolution of asteroid families not always obtainable with an analysis in the proper element domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As nuclear magnetic resonance imaging and spectroscopy move inexorably toward higher field-strength magnets in search of improved signal-to-noise ratio, spectral resolution, and spatial resolution, the way in which radiofrequency (RF) probes are designed changes. At higher frequencies, resonant cavities become the favored RF ''coil'' type and may be built using streamline elements to reduce the inductance of the system. In modeling such systems, the quasi-static approach of assuming that current flows evenly in all conductor cross sections and that adjacent conductors do not affect each other becomes less reasonable. The proximity of RF conductors in resonators typically causes RF eddy currents to flow, whereby the current density in each rung is altered by the RF fields generated by nearby conductors. The proper understanding and prediction of how resonators will perform require a model of the current densities flowing in conducting sections, including all RF eddy current effects. Very few models of this type have been presented in the literature. This article presents an overview of one such model and of how it may be applied to a variety of resonators, both shielded and unshielded, circular, and elliptical, in cross section. Results are presented from a shielded head coil operating at 2 tesla. (C) 1997 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-frequency cyclonverter acts as a direct ac-to-ac power converter circuit that does not require a diode bidge rectifier. Bridgeless topology makes it possible to remove forward voltage drop losses that are present in a diode bridge. In addition, the on-state losses can be reduced to 1.5 times the on-state resistance of switches in half-bridge operation of the cycloconverter. A high-frequency cycloconverter is reviewed and the charging effect of the dc-capacitors in ``back-to-back'' or synchronous mode operation operation is analyzed. In addition, a control method is introduced for regulating dc-voltage of the ac-side capacitors in synchronous operation mode. The controller regulates the dc-capacitors and prevents switches from reaching overvoltage level. This can be accomplished by variating phase-shift between the upper and the lower gate signals. By adding phase-shift between the gate signal pairs, the charge stored in the energy storage capacitors can be discharged through the resonant load and substantially, the output resonant current amplitude can be improved. The above goals are analyzed and illustrated with simulation. Theory is supported with practical measurements where the proposed control method is implemented in an FPGA device and tested with a high-frequency cycloconverter using super-junction power MOSFETs as switching devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design equations are presented for calculating the resonance frequencies for a compact dual frequency arrow-shaped microstrip antenna. This provides a fast and simple way to predict the resonant frequencies of the antenna. The antenna is also analyzed using the IE3D simulation package. The theoretical predictions are found to be very close to the IE3D results and thus establish the validity of the design formulae

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new design of' a dual-frequency dual-polarized square microsh'ip antenna fed along the diagonal, embedded with a square slot having three extended stubs for frequency tuning, is introduced. The proposed antenna was fabricated using a standard photolithographic method and the antenna was tested using the HP 3510(:; Vector Network Analyser. The antenna is capable of generating dual resonant frequencies with mutually perpendicular polarizations and broad radiation pattern characteristics. Such dual-frequency designs find wide applications in personal mobile handsets combining GSM and CDS 1800 modes, and applications in which different frequencies are used for emission and reception such as personal satellite communications and cellular network systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel compact single-layer dual frequency microstrip antenna which uses an H-shaped geometry with two U-shaped slots embedded near the radiation edges, is presented. By changing the design parameters, the lower and higher resonant frequencies can be controlled easily, and a range of frequency ratios (1.716-2.363) can be obtained in this design. For the two operating frequencies of the proposed antenna, the same polarization planes and broadside radiation patterns are achieved. Compared to the regular dualfrequency patch antenna, this antenna can realize a significant size reduction

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new design for a compact electronically reconffgurable singlefeed dual frequency dual-polarized operation of a square-microstrip antenna capable of achieving tunable frequency ratios in the range 1.1 to 1.37 is proposed and experimentally studied. Varactor diodes inlegruted with the arms of the hexagonal slot and embedded in the square patch are used to tune the operating frequencies by applying reverse-bias voltage. The design has the advantage of size reduction up to 73.21% and 49.86% for the two resonant frequencies, respectively, as compared to standard rectangular patches. The antenna offers good bandwidth of 5.74% and 5.36% for the two operating frequencies. A highly simplified tuning circuitry without any transmission lines adds to the compactness of the design

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of a compact, single feed, dual frequency dual polarized and electronically reconfigurable microstrip antenna is presented in this paper. A square patch loaded with a hexagonal slot having extended slot arms constitutes the fundamental structure of the antenna. The tuning of the two resonant frequencies is realized by varying the effective electrical length of the slot arms by embedding varactor diodes across the slots. A high tuning range of 34.43% (1.037–1.394 GHz) and 9.27% (1.359–1.485 GHz) is achieved for the two operating frequencies respectively, when the bias voltage is varied from 0 to −30 V. The salient feature of this design is that it uses no matching networks even though the resonant frequencies are tuned in a wide range with good matching below −10 dB. The antenna has an added advantage of size reduction up to 80.11% and 65.69% for the two operating frequencies compared to conventional rectangular patches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present thesis we have formulated the Dalgarno-Lewis procedure for two-and three-photon processes and an elegant alternate expressions are derived. Starting from a brief review on various multiphoton processes we have discussed the difficulties coming in the perturbative treatment of multiphoton processes. A small discussion on various available methods for studying multiphoton processes are presented in chapter 2. These theoretical treatments mainly concentrate on the evaluation of the higher order matrix elements coming in the perturbation theory. In chapter 3 we have described the use of Dalgarno-Lewis procedure and its implimentation on second order matrix elements. The analytical expressions for twophoton transition amplitude, two-photon ionization cross section, dipole dynamic polarizability and Kramers-Heiseberg are obtained in a unified manner. Fourth chapter is an extension of the implicit summation technique presented in chapter 3. We have clearly mentioned the advantage of our method, especially the analytical continuation of the relevant expressions suited for various values of radiation frequency which is also used for efficient numerical analysis. A possible extension of the work is to study various multiphoton processcs from the stark shifted first excited states of hydrogen atom. We can also extend this procedure for studying multiphoton processes in alkali atoms as well as Rydberg atoms. Also, instead of going for analytical expressions, one can try a complete numerical evaluation of the higher order matrix elements using this procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resonant interactions among equatorial waves in the presence of a diurnally varying heat source are studied in the context of the diabatic version of the equatorial beta-plane primitive equations for a motionless, hydrostatic, horizontally homogeneous and stably stratified background atmosphere. The heat source is assumed to be periodic in time and of small amplitude [i.e., O(epsilon)] and is prescribed to roughly represent the typical heating associated with deep convection in the tropical atmosphere. In this context, using the asymptotic method of multiple time scales, the free linear Rossby, Kelvin, mixed Rossby-gravity, and inertio-gravity waves, as well as their vertical structures, are obtained as leading-order solutions. These waves are shown to interact resonantly in a triad configuration at the O(e) approximation, and the dynamics of these interactions have been studied in the presence of the forcing. It is shown that for the planetary-scale wave resonant triads composed of two first baroclinic equatorially trapped waves and one barotropic Rossby mode, the spectrum of the thermal forcing is such that only one of the triad components is resonant with the heat source. As a result, to illustrate the role of the diurnal forcing in these interactions in a simplified fashion, two kinds of triads have been analyzed. The first one refers to triads composed of a k = 0 first baroclinic geostrophic mode, which is resonant with the stationary component of the diurnal heat source, and two dispersive modes, namely, a mixed Rossby-gravity wave and a barotropic Rossby mode. The other class corresponds to triads composed of two first baroclinic inertio-gravity waves in which the highest-frequency wave resonates with a transient harmonic of the forcing. The integration of the asymptotic reduced equations for these selected resonant triads shows that the stationary component of the diurnal heat source acts as an ""accelerator"" for the energy exchanges between the two dispersive waves through the excitation of the catalyst geostrophic mode. On the other hand, since in the second class of triads the mode that resonates with the forcing is the most energetically active member because of the energy constraints imposed by the triad dynamics, the results show that the convective forcing in this case is responsible for a longer time scale modulation in the resonant interactions, generating a period doubling in the energy exchanges. The results suggest that the diurnal variation of tropical convection might play an important role in generating low-frequency fluctuations in the atmospheric circulation through resonant nonlinear interactions.