854 resultados para Representation. Rationalities. Race. Recognition. Culture. Classification.Ontology. Fetish.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis chronicles the development of western forms of race and racism in China. It then studies contemporary China using theories derived from whiteness studies in order to explain the unique position that whites (Caucasians) have in China today. In Chapter I, I break down the definition of race and introduce a foundation for a whiteness studies approach to research. In Chapter II, I analyze how Chinese classified themselves and other humans prior to the western system of race. In Chapter III, I chronicle the introduction of western forms of race and racism to China, and the appropriation of these concepts to suit Chinese goals. In Chapter IV, I approach cultural phenomenon in contemporary China by situating them in their historical traditions as well as by approaching them as displaying an internalized racism and white privilege. Finally in the Conclusion, I postulate on what China¿s contemporary racial system means for China.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present a solution to the problem of action and gesture recognition using sparse representations. The dictionary is modelled as a simple concatenation of features computed for each action or gesture class from the training data, and test data is classified by finding sparse representation of the test video features over this dictionary. Our method does not impose any explicit training procedure on the dictionary. We experiment our model with two kinds of features, by projecting (i) Gait Energy Images (GEIs) and (ii) Motion-descriptors, to a lower dimension using Random projection. Experiments have shown 100% recognition rate on standard datasets and are compared to the results obtained with widely used SVM classifier.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the fusion of probabilistic knowledge-based classification rules and learning automata theory is proposed and as a result we present a set of probabilistic classification rules with self-learning capability. The probabilities of the classification rules change dynamically guided by a supervised reinforcement process aimed at obtaining an optimum classification accuracy. This novel classifier is applied to the automatic recognition of digital images corresponding to visual landmarks for the autonomous navigation of an unmanned aerial vehicle (UAV) developed by the authors. The classification accuracy of the proposed classifier and its comparison with well-established pattern recognition methods is finally reported.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extracting opinions and emotions from text is becoming increasingly important, especially since the advent of micro-blogging and social networking. Opinion mining is particularly popular and now gathers many public services, datasets and lexical resources. Unfortunately, there are few available lexical and semantic resources for emotion recognition that could foster the development of new emotion aware services and applications. The diversity of theories of emotion and the absence of a common vocabulary are two of the main barriers to the development of such resources. This situation motivated the creation of Onyx, a semantic vocabulary of emotions with a focus on lexical resources and emotion analysis services. It follows a linguistic Linked Data approach, it is aligned with the Provenance Ontology, and it has been integrated with the Lexicon Model for Ontologies (lemon), a popular RDF model for representing lexical entries. This approach also means a new and interesting way to work with different theories of emotion. As part of this work, Onyx has been aligned with EmotionML and WordNet-Affect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Comunicación presentada en el 2nd International Workshop on Pattern Recognition in Information Systems, Alicante, April, 2002.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a new feature representation method based on the construction of a Confidence Matrix (CM). This representation consists of posterior probability values provided by several weak classifiers, each one trained and used in different sets of features from the original sample. The CM allows the final classifier to abstract itself from discovering underlying groups of features. In this work the CM is applied to isolated character image recognition, for which several set of features can be extracted from each sample. Experimentation has shown that the use of CM permits a significant improvement in accuracy in most cases, while the others remain the same. The results were obtained after experimenting with four well-known corpora, using evolved meta-classifiers with the k-Nearest Neighbor rule as a weak classifier and by applying statistical significance tests.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human behaviour recognition has been, and still remains, a challenging problem that involves different areas of computational intelligence. The automated understanding of people activities from video sequences is an open research topic in which the computer vision and pattern recognition areas have made big efforts. In this paper, the problem is studied from a prediction point of view. We propose a novel method able to early detect behaviour using a small portion of the input, in addition to the capabilities of it to predict behaviour from new inputs. Specifically, we propose a predictive method based on a simple representation of trajectories of a person in the scene which allows a high level understanding of the global human behaviour. The representation of the trajectory is used as a descriptor of the activity of the individual. The descriptors are used as a cue of a classification stage for pattern recognition purposes. Classifiers are trained using the trajectory representation of the complete sequence. However, partial sequences are processed to evaluate the early prediction capabilities having a specific observation time of the scene. The experiments have been carried out using the three different dataset of the CAVIAR database taken into account the behaviour of an individual. Additionally, different classic classifiers have been used for experimentation in order to evaluate the robustness of the proposal. Results confirm the high accuracy of the proposal on the early recognition of people behaviours.