965 resultados para Remote sensing of glaciers : techniques for topographical, spatial and thematic mapping of glaciers
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In den letzten drei Jahrzehnten sind Fernerkundung und GIS in den Geowissenschaften zunehmend wichtiger geworden, um die konventionellen Methoden von Datensammlung und zur Herstellung von Landkarten zu verbessern. Die vorliegende Arbeit befasst sich mit der Anwendung von Fernerkundung und geographischen Informationssystemen (GIS) für geomorphologische Untersuchungen. Durch die Kombination beider Techniken ist es vor allem möglich geworden, geomorphologische Formen im Überblick und dennoch detailliert zu erfassen. Als Grundlagen werden in dieser Arbeit topographische und geologische Karten, Satellitenbilder und Klimadaten benutzt. Die Arbeit besteht aus 6 Kapiteln. Das erste Kapitel gibt einen allgemeinen Überblick über den Untersuchungsraum. Dieser umfasst folgende morphologische Einheiten, klimatischen Verhältnisse, insbesondere die Ariditätsindizes der Küsten- und Gebirgslandschaft sowie das Siedlungsmuster beschrieben. Kapitel 2 befasst sich mit der regionalen Geologie und Stratigraphie des Untersuchungsraumes. Es wird versucht, die Hauptformationen mit Hilfe von ETM-Satellitenbildern zu identifizieren. Angewandt werden hierzu folgende Methoden: Colour Band Composite, Image Rationing und die sog. überwachte Klassifikation. Kapitel 3 enthält eine Beschreibung der strukturell bedingten Oberflächenformen, um die Wechselwirkung zwischen Tektonik und geomorphologischen Prozessen aufzuklären. Es geht es um die vielfältigen Methoden, zum Beispiel das sog. Image Processing, um die im Gebirgskörper vorhandenen Lineamente einwandfrei zu deuten. Spezielle Filtermethoden werden angewandt, um die wichtigsten Lineamente zu kartieren. Kapitel 4 stellt den Versuch dar, mit Hilfe von aufbereiteten SRTM-Satellitenbildern eine automatisierte Erfassung des Gewässernetzes. Es wird ausführlich diskutiert, inwieweit bei diesen Arbeitsschritten die Qualität kleinmaßstäbiger SRTM-Satellitenbilder mit großmaßstäbigen topographischen Karten vergleichbar ist. Weiterhin werden hydrologische Parameter über eine qualitative und quantitative Analyse des Abflussregimes einzelner Wadis erfasst. Der Ursprung von Entwässerungssystemen wird auf der Basis geomorphologischer und geologischer Befunde interpretiert. Kapitel 5 befasst sich mit der Abschätzung der Gefahr episodischer Wadifluten. Die Wahrscheinlichkeit ihres jährlichen Auftretens bzw. des Auftretens starker Fluten im Abstand mehrerer Jahre wird in einer historischen Betrachtung bis 1921 zurückverfolgt. Die Bedeutung von Regentiefs, die sich über dem Roten Meer entwickeln, und die für eine Abflussbildung in Frage kommen, wird mit Hilfe der IDW-Methode (Inverse Distance Weighted) untersucht. Betrachtet werden außerdem weitere, regenbringende Wetterlagen mit Hilfe von Meteosat Infrarotbildern. Genauer betrachtet wird die Periode 1990-1997, in der kräftige, Wadifluten auslösende Regenfälle auftraten. Flutereignisse und Fluthöhe werden anhand von hydrographischen Daten (Pegelmessungen) ermittelt. Auch die Landnutzung und Siedlungsstruktur im Einzugsgebiet eines Wadis wird berücksichtigt. In Kapitel 6 geht es um die unterschiedlichen Küstenformen auf der Westseite des Roten Meeres zum Beispiel die Erosionsformen, Aufbauformen, untergetauchte Formen. Im abschließenden Teil geht es um die Stratigraphie und zeitliche Zuordnung von submarinen Terrassen auf Korallenriffen sowie den Vergleich mit anderen solcher Terrassen an der ägyptischen Rotmeerküste westlich und östlich der Sinai-Halbinsel.
Resumo:
Il presente studio si concentra sulle diverse applicazioni del telerilevamento termico in ambito urbano. Vengono inizialmente descritti la radiazione infrarossa e le sue interazioni con l’atmosfera terrestre, le leggi principali che regolano lo scambio di calore per irraggiamento, le caratteristiche dei sensori e le diverse applicazioni di termografia. Successivamente sono trattati nel dettaglio gli aspetti caratteristici della termografia da piattaforma satellitare, finalizzata principalmente alla valutazione del fenomeno dell'Urban Heat Island; vengono descritti i sensori disponibili, le metodologie di correzione per gli effetti atmosferici, per la stima dell'emissività delle superfici e per il calcolo della temperatura superficiale dei pixels. Viene quindi illustrata la sperimentazione effettuata sull'area di Bologna mediante immagini multispettrali ASTER: i risultati mostrano come sull'area urbana sia riscontrabile la presenza dell'Isola di Calore Urbano, anche se la sua quantificazione risulta complessa. Si procede quindi alla descrizione di potenzialità e limiti della termografia aerea, dei suoi diversi utilizzi, delle modalità operative di rilievo e degli algoritmi utilizzati per il calcolo della temperatura superficiale delle coperture edilizie. Tramite l’analisi di alcune esperienze precedenti vengono trattati l’influenza dell’atmosfera, la modellazione dei suoi effetti sulla radianza rilevata, i diversi metodi per la stima dell’emissività. Viene quindi introdotto il progetto europeo Energycity, finalizzato alla creazione di un sistema GeoWeb di supporto spaziale alle decisioni per la riduzione di consumi energetici e produzione di gas serra su sette città dell'Europa Centrale. Vengono illustrate le modalità di rilievo e le attività di processing dei datasets digitali per la creazione di mappe di temperatura superficiale da implementare nel sistema SDSS. Viene infine descritta la sperimentazione effettuata sulle immagini termiche acquisite nel febbraio 2010 sulla città di Treviso, trasformate in un mosaico georiferito di temperatura radiometrica tramite correzioni geometriche e radiometriche; a seguito della correzione per l’emissività quest’ultimo verrà trasformato in un mosaico di temperatura superficiale.
Resumo:
A new methodology based on combining active and passive remote sensing and simultaneous and collocated radiosounding data to study the aerosol hygroscopic growth effects on the particle optical and microphysical properties is presented. The identification of hygroscopic growth situations combines the analysis of multispectral aerosol particle backscatter coefficient and particle linear depolarization ratio with thermodynamic profiling of the atmospheric column. We analyzed the hygroscopic growth effects on aerosol properties, namely the aerosol particle backscatter coefficient and the volume concentration profiles, using data gathered at Granada EARLINET station. Two study cases, corresponding to different aerosol loads and different aerosol types, are used for illustrating the potential of this methodology. Values of the aerosol particle backscatter coefficient enhancement factors range from 2.1 ± 0.8 to 3.9 ± 1.5, in the ranges of relative humidity 60–90 and 40–83%, being similar to those previously reported in the literature. Differences in the enhancement factor are directly linked to the composition of the atmospheric aerosol. The largest value of the aerosol particle backscatter coefficient enhancement factor corresponds to the presence of sulphate and marine particles that are more affected by hygroscopic growth. On the contrary, the lowest value of the enhancement factor corresponds to an aerosol mixture containing sulphates and slight traces of mineral dust. The Hänel parameterization is applied to these case studies, obtaining results within the range of values reported in previous studies, with values of the γ exponent of 0.56 ± 0.01 (for anthropogenic particles slightly influenced by mineral dust) and 1.07 ± 0.01 (for the situation dominated by anthropogenic particles), showing the convenience of this remote sensing approach for the study of hygroscopic effects of the atmospheric aerosol under ambient unperturbed conditions. For the first time, the retrieval of the volume concentration profiles for these cases using the Lidar Radiometer Inversion Code (LIRIC) allows us to analyze the aerosol hygroscopic growth effects on aerosol volume concentration, observing a stronger increase of the fine mode volume concentration with increasing relative humidity.
Resumo:
In this paper, a system that allows applying precision agriculture techniques is described. The application is based on the deployment of a team of unmanned aerial vehicles that are able to take georeferenced pictures in order to create a full map by applying mosaicking procedures for postprocessing. The main contribution of this work is practical experimentation with an integrated tool. Contributions in different fields are also reported. Among them is a new one-phase automatic task partitioning manager, which is based on negotiation among the aerial vehicles, considering their state and capabilities. Once the individual tasks are assigned, an optimal path planning algorithm is in charge of determining the best path for each vehicle to follow. Also, a robust flight control based on the use of a control law that improves the maneuverability of the quadrotors has been designed. A set of field tests was performed in order to analyze all the capabilities of the system, from task negotiations to final performance. These experiments also allowed testing control robustness under different weather conditions.
Resumo:
CO2 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic CO2 into the atmosphere. CCS technologies are expected to account for the 20% of the CO2 reduction by 2050. Geophysical, ground deformation and geochemical monitoring have been carried out to detect potential leakage, and, in the event that this occurs, identify and quantify it. This monitoring needs to be developed prior, during and after the injection stage. For a correct interpretation and quantification of the leakage, it is essential to establish a pre-injection characterization (baseline) of the area affected by the CO2 storage at reservoir level as well as at shallow depth, surface and atmosphere, via soil gas measurements. Therefore, the methodological approach is important because it can affect the spatial and temporal variability of this flux and even jeopardize the total value of CO2 in a given area. In this sense, measurements of CO2 flux were done using portable infrared analyzers (i.e., accumulation chambers) adapted to monitoring the geological storage of CO2, and other measurements of trace gases, e.g. radon isotopes and remote sensing imagery were tested in the natural analogue of Campo de Calatrava (Ciudad Real, Spain) with the aim to apply in CO2 leakage detection; thus, observing a high correlation between CO2 and radon (r=0,858) and detecting some vegetation indices that may be successfully applied for the leakage detection.
Resumo:
The satellite remote sensing missions are essential for long-term research around the condition of the earth resources and environment. On the other hand, in recent years the application of microsatellites is of interest in many space programs for their less cost and response time. In microsatellite remote sensing missions there are tight interrelations between different requirements such as orbital altitude, revisit time, mission life and spatial resolution. Also, all of these requirements can affect the whole system level design characteristics. In this work, the remote sensing microsatellite sizing process is divided into three major design disciplines; a) orbit design, b) payload sizing and c) bus sizing. Finally, some specific design cases are investigated inside the design space for evaluating the effect of different design variables on the satellite total mass. Considering the results of the work, it is concluded that applying a systematic approach at the initial design phase of such projects provides a good insight to the not clearly seen interactions inside their highly extended design space
Resumo:
Substantial retreat or disintegration of numerous ice shelves have been observed on the Antarctic Peninsula. The ice shelf in the Prince Gustav Channel retreated gradually since the late 1980's and broke-up in 1995. Tributary glaciers reacted with speed-up, surface lowering and increased ice discharge, consequently contributing to sea level rise. We present a detailed long-term study (1993-2014) on the dynamic response of Sjögren Inlet glaciers to the disintegration of Prince Gustav Ice Shelf. We analyzed various remote sensing datasets to observe the reactions of the glaciers to the loss of the buttressing ice shelf. A strong increase in ice surface velocities was observed with maximum flow speeds reaching 2.82±0.48 m/d in 2007 and 1.50±0.32 m/d in 2004 at Sjögren and Boydell glaciers respectively. Subsequently, the flow velocities decelerated, however in late 2014, we still measured about two times the values of our first measurements in 1996. The tributary glaciers retreated 61.7±3.1 km² behind the former grounding line of the ice shelf. In regions below 1000 m a.s.l., a mean surface lowering of -68±10 m (-3.1 m/a) was observed in the period 1993-2014. The lowering rate decreased to -2.2 m/a in recent years. Based on the surface lowering rates, geodetic mass balances of the glaciers were derived for different time steps. High mass loss rate of -1.21±0.36 Gt/a was found in the earliest period (1993-2001). Due to the dynamic adjustments of the glaciers to the new boundary conditions the ice mass loss reduced to -0.59±0.11 Gt/a in the period 2012-2014, resulting in an average mass loss rate of -0.89±0.16 Gt/a (1993-2014). Including the retreat of the ice front and grounding line, a total mass change of -38.5±7.7 Gt and a contribution to sea level rise of 0.061±0.013 mm were computed. Analysis of the ice flux revealed that available bedrock elevation estimates at Sjögren Inlet are too shallow and are the major uncertainty in ice flux computations. This temporally dense time series analysis of Sjögren Inlet glaciers shows that the adjustments of tributary glaciers to ice shelf disintegration are still going on and provides detailed information of the changes in glacier dynamics.
Resumo:
Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference
Resumo:
Techniques are developed for the visual interpretation of drainage features from satellite imagery. The process of interpretation is formalised by the introduction of objective criteria. Problems of assessing the accuracy of maps are recognized, and a method is developed for quantifying the correctness of an interpretation, in which the more important features are given an appropriate weight. A study was made of imagery from a variety of landscapes in Britain and overseas, from which maps of drainage networks were drawn. The accuracy of the mapping was assessed in absolute terms, and also in relation to the geomorphic parameters used in hydrologic models. Results are presented relating the accuracy of interpretation to image quality, subjectivity and the effects of topography. It is concluded that the visual interpretation of satellite imagery gives maps of sufficient accuracy for the preliminary assessment of water resources, and for the estimation of geomorphic parameters. An examination is made of the use of remotely sensed data in hydrologic models. It is proposed that the spectral properties of a scene are holistic, and are therefore more efficient than conventional catchment characteristics. Key hydrologic parameters were identified, and were estimated from streamflow records. The correlation between hydrologic variables and spectral characteristics was examined, and regression models for streamflow were developed, based solely on spectral data. Regression models were also developed using conventional catchment characteristics, whose values were estimated using satellite imagery. It was concluded that models based primarily on variables derived from remotely sensed data give results which are as good as, or better than, models using conventional map data. The holistic properties of remotely sensed data are realised only in undeveloped areas. In developed areas an assessment of current land-use is a more useful indication of hydrologic response.
Resumo:
Decomposition of domestic wastes in an anaerobic environment results in the production of landfill gas. Public concern about landfill disposal and particularly the production of landfill gas has been heightened over the past decade. This has been due in large to the increased quantities of gas being generated as a result of modern disposal techniques, and also to their increasing effect on modern urban developments. In order to avert diasters, effective means of preventing gas migration are required. This, in turn requires accurate detection and monitoring of gas in the subsurface. Point sampling techniques have many drawbacks, and accurate measurement of gas is difficult. Some of the disadvantages of these techniques could be overcome by assessing the impact of gas on biological systems. This research explores the effects of landfill gas on plants, and hence on the spectral response of vegetation canopies. Examination of the landfill gas/vegetation relationship is covered, both by review of the literature and statistical analysis of field data. The work showed that, although vegetation health was related to landfill gas, it was not possible to define a simple correlation. In the landfill environment, contribution from other variables, such as soil characteristics, frequently confused the relationship. Two sites are investigated in detail, the sites contrasting in terms of the data available, site conditions, and the degree of damage to vegetation. Gas migration at the Panshanger site was dominantly upwards, affecting crops being grown on the landfill cap. The injury was expressed as an overall decline in plant health. Discriminant analysis was used to account for the variations in plant health, and hence the differences in spectral response of the crop canopy, using a combination of soil and gas variables. Damage to both woodland and crops at the Ware site was severe, and could be easily related to the presence of gas. Air photographs, aerial video, and airborne thematic mapper data were used to identify damage to vegetation, and relate this to soil type. The utility of different sensors for this type of application is assessed, and possible improvements that could lead to more widespread use are identified. The situations in which remote sensing data could be combined with ground survey are identified. In addition, a possible methodology for integrating the two approaches is suggested.
Resumo:
Tide propagation through coastal wetlands is a complex phenomenon affected by vegetation, channels, and tidal conditions. Generally, tidal flow is studied using stage (water level) observations, which provide good temporal resolution, but they are acquired in limited locations. Here, a remote-sensing technique, wetland InSAR (interferometric synthetic aperture radar), is used to detect tidal flow in vegetated coastal environments over broad spatial scales. The technique is applied to data sets acquired by three radar satellites over the western Everglades in south Florida. Interferometric analysis of the data shows that the greatest water-level changes occur along tidal channels, reflecting a high velocity gradient between fast horizontal flow in the channel and the slow flow propagation through the vegetation. The high-resolution observations indicate that the tidal flushing zone extends 2–3 km on both sides of tidal channels and can extend 3–4 km inland from the end of the channel. The InSAR observations can also serve as quantitative constraints for detailed coastal wetland flow models.
Resumo:
This research analyzed the spatial relationship between a mega-scale fracture network and the occurrence of vegetation in an arid region. High-resolution aerial photographs of Arches National Park, Utah were used for digital image processing. Four sets of large-scale joints were digitized from the rectified color photograph in order to characterize the geospatial properties of the fracture network with the aid of a Geographic Information System. An unsupervised landcover classification was carried out to identify the spatial distribution of vegetation on the fractured outcrop. Results of this study confirm that the WNW-ESE alignment of vegetation is dominantly controlled by the spatial distribution of the systematic joint set, which in turn parallels the regional fold axis. This research provides insight into the spatial heterogeneity inherent to fracture networks, as well as the effects of jointing on the distribution of surface vegetation in desert environments.