929 resultados para Remediation time estimation
Resumo:
In recent years, thanks to the technological advances, electromagnetic methods for non-invasive shallow subsurface characterization have been increasingly used in many areas of environmental and geoscience applications. Among all the geophysical electromagnetic methods, the Ground Penetrating Radar (GPR) has received unprecedented attention over the last few decades due to its capability to obtain, spatially and temporally, high-resolution electromagnetic parameter information thanks to its versatility, its handling, its non-invasive nature, its high resolving power, and its fast implementation. The main focus of this thesis is to perform a dielectric site characterization in an efficient and accurate way studying in-depth a physical phenomenon behind a recent developed GPR approach, the so-called early-time technique, which infers the electrical properties of the soil in the proximity of the antennas. In particular, the early-time approach is based on the amplitude analysis of the early-time portion of the GPR waveform using a fixed-offset ground-coupled antenna configuration where the separation between the transmitting and receiving antenna is on the order of the dominant pulse-wavelength. Amplitude information can be extracted from the early-time signal through complex trace analysis, computing the instantaneous-amplitude attributes over a selected time-duration of the early-time signal. Basically, if the acquired GPR signals are considered to represent the real part of a complex trace, and the imaginary part is the quadrature component obtained by applying a Hilbert transform to the GPR trace, the amplitude envelope is the absolute value of the resulting complex trace (also known as the instantaneous-amplitude). Analysing laboratory information, numerical simulations and natural field conditions, and summarising the overall results embodied in this thesis, it is possible to suggest the early-time GPR technique as an effective method to estimate physical properties of the soil in a fast and non-invasive way.
Resumo:
The Schroeder's backward integration method is the most used method to extract the decay curve of an acoustic impulse response and to calculate the reverberation time from this curve. In the literature the limits and the possible improvements of this method are widely discussed. In this work a new method is proposed for the evaluation of the energy decay curve. The new method has been implemented in a Matlab toolbox. Its performance has been tested versus the most accredited literature method. The values of EDT and reverberation time extracted from the energy decay curves calculated with both methods have been compared in terms of the values themselves and in terms of their statistical representativeness. The main case study consists of nine Italian historical theatres in which acoustical measurements were performed. The comparison of the two extraction methods has also been applied to a critical case, i.e. the structural impulse responses of some building elements. The comparison underlines that both methods return a comparable value of the T30. Decreasing the range of evaluation, they reveal increasing differences; in particular, the main differences are in the first part of the decay, where the EDT is evaluated. This is a consequence of the fact that the new method returns a “locally" defined energy decay curve, whereas the Schroeder's method accumulates energy from the tail to the beginning of the impulse response. Another characteristic of the new method for the energy decay extraction curve is its independence on the background noise estimation. Finally, a statistical analysis is performed on the T30 and EDT values calculated from the impulse responses measurements in the Italian historical theatres. The aim of this evaluation is to know whether a subset of measurements could be considered representative for a complete characterization of these opera houses.
Resumo:
In 1996, a cadaver in adipocere condition was discovered in a bay of the Brienzer See in Switzerland. The torso was named "Brienzi" following the "Iceman" Ötzi. Several outer parts of the body were incrusted; the incrustation was in blue color. Further investigations showed that the bluish covering of parts of the adipocere torso were a mineral known as Vivianite. Vivianite (Fe(3)(PO(4))(2-)(H(2)O)(8)) is an iron phosphate mineral with needle lengths between 100 and 150μm. It is normally associated in a context with organic archaeological and geological materials (some hundreds to millions of years old). Hitherto, it is only described in three cases of human remains. We were able to reconstruct the following facts about 'Brienzi': The man drowned in Lake Brienz or in one of its tributaries during the 1700s. The body was subsequently covered with sedimentation and thus buried under water. An earthquake produced an underwater landslide which eventually exposed the corpse.
Resumo:
In this paper we propose methods for smooth hazard estimation of a time variable where that variable is interval censored. These methods allow one to model the transformed hazard in terms of either smooth (smoothing splines) or linear functions of time and other relevant time varying predictor variables. We illustrate the use of this method on a dataset of hemophiliacs where the outcome, time to seroconversion for HIV, is interval censored and left-truncated.
Resumo:
This paper considers statistical models in which two different types of events, such as the diagnosis of a disease and the remission of the disease, occur alternately over time and are observed subject to right censoring. We propose nonparametric estimators for the joint distribution of bivariate recurrence times and the marginal distribution of the first recurrence time. In general, the marginal distribution of the second recurrence time cannot be estimated due to an identifiability problem, but a conditional distribution of the second recurrence time can be estimated non-parametrically. In literature, statistical methods have been developed to estimate the joint distribution of bivariate recurrence times based on data of the first pair of censored bivariate recurrence times. These methods are efficient in the current model because recurrence times of higher orders are not used. Asymptotic properties of the estimators are established. Numerical studies demonstrate the estimator performs well with practical sample sizes. We apply the proposed method to a Denmark psychiatric case register data set for illustration of the methods and theory.
Resumo:
Knowledge of the time interval from death (post-mortem interval, PMI) has an enormous legal, criminological and psychological impact. Aiming to find an objective method for the determination of PMIs in forensic medicine, 1H-MR spectroscopy (1H-MRS) was used in a sheep head model to follow changes in brain metabolite concentrations after death. Following the characterization of newly observed metabolites (Ith et al., Magn. Reson. Med. 2002; 5: 915-920), the full set of acquired spectra was analyzed statistically to provide a quantitative estimation of PMIs with their respective confidence limits. In a first step, analytical mathematical functions are proposed to describe the time courses of 10 metabolites in the decomposing brain up to 3 weeks post-mortem. Subsequently, the inverted functions are used to predict PMIs based on the measured metabolite concentrations. Individual PMIs calculated from five different metabolites are then pooled, being weighted by their inverse variances. The predicted PMIs from all individual examinations in the sheep model are compared with known true times. In addition, four human cases with forensically estimated PMIs are compared with predictions based on single in situ MRS measurements. Interpretation of the individual sheep examinations gave a good correlation up to 250 h post-mortem, demonstrating that the predicted PMIs are consistent with the data used to generate the model. Comparison of the estimated PMIs with the forensically determined PMIs in the four human cases shows an adequate correlation. Current PMI estimations based on forensic methods typically suffer from uncertainties in the order of days to weeks without mathematically defined confidence information. In turn, a single 1H-MRS measurement of brain tissue in situ results in PMIs with defined and favorable confidence intervals in the range of hours, thus offering a quantitative and objective method for the determination of PMIs.
Resumo:
This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms.
Resumo:
Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.
Resumo:
Spatial tracking is one of the most challenging and important parts of Mixed Reality environments. Many applications, especially in the domain of Augmented Reality, rely on the fusion of several tracking systems in order to optimize the overall performance. While the topic of spatial tracking sensor fusion has already seen considerable interest, most results only deal with the integration of carefully arranged setups as opposed to dynamic sensor fusion setups. A crucial prerequisite for correct sensor fusion is the temporal alignment of the tracking data from several sensors. Tracking sensors are typically encountered in Mixed Reality applications, are generally not synchronized. We present a general method to calibrate the temporal offset between different sensors by the Time Delay Estimation method which can be used to perform on-line temporal calibration. By applying Time Delay Estimation on the tracking data, we show that the temporal offset between generic Mixed Reality spatial tracking sensors can be calibrated. To show the correctness and the feasibility of this approach, we have examined different variations of our method and evaluated various combinations of tracking sensors. We furthermore integrated this time synchronization method into our UBITRACK Mixed Reality tracking framework to provide facilities for calibration and real-time data alignment.