869 resultados para Relevance Feature Extraction


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several recent works deal with 3D data in mobile robotic problems, e.g. mapping or egomotion. Data comes from any kind of sensor such as stereo vision systems, time of flight cameras or 3D lasers, providing a huge amount of unorganized 3D data. In this paper, we describe an efficient method to build complete 3D models from a Growing Neural Gas (GNG). The GNG is applied to the 3D raw data and it reduces both the subjacent error and the number of points, keeping the topology of the 3D data. The GNG output is then used in a 3D feature extraction method. We have performed a deep study in which we quantitatively show that the use of GNG improves the 3D feature extraction method. We also show that our method can be applied to any kind of 3D data. The 3D features obtained are used as input in an Iterative Closest Point (ICP)-like method to compute the 6DoF movement performed by a mobile robot. A comparison with standard ICP is performed, showing that the use of GNG improves the results. Final results of 3D mapping from the egomotion calculated are also shown.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Feature vectors can be anything from simple surface normals to more complex feature descriptors. Feature extraction is important to solve various computer vision problems: e.g. registration, object recognition and scene understanding. Most of these techniques cannot be computed online due to their complexity and the context where they are applied. Therefore, computing these features in real-time for many points in the scene is impossible. In this work, a hardware-based implementation of 3D feature extraction and 3D object recognition is proposed to accelerate these methods and therefore the entire pipeline of RGBD based computer vision systems where such features are typically used. The use of a GPU as a general purpose processor can achieve considerable speed-ups compared with a CPU implementation. In this work, advantageous results are obtained using the GPU to accelerate the computation of a 3D descriptor based on the calculation of 3D semi-local surface patches of partial views. This allows descriptor computation at several points of a scene in real-time. Benefits of the accelerated descriptor have been demonstrated in object recognition tasks. Source code will be made publicly available as contribution to the Open Source Point Cloud Library.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Single shortest path extraction algorithms have been used in a number of areas such as network flow and image analysis. In image analysis, shortest path techniques can be used for object boundary detection, crack detection, or stereo disparity estimation. Sometimes one needs to find multiple paths as opposed to a single path in a network or an image where the paths must satisfy certain constraints. In this paper, we propose a new algorithm to extract multiple paths simultaneously within an image using a constrained expanded trellis (CET) for feature extraction and object segmentation. We also give a number of application examples for our multiple paths extraction algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lots of work has been done in texture feature extraction for rectangular images, but not as much attention has been paid to the arbitrary-shaped regions available in region-based image retrieval (RBIR) systems. In This work, we present a texture feature extraction algorithm, based on projection onto convex sets (POCS) theory. POCS iteratively concentrates more and more energy into the selected coefficients from which texture features of an arbitrary-shaped region can be extracted. Experimental results demonstrate the effectiveness of the proposed algorithm for image retrieval purposes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The content-based image retrieval is important for various purposes like disease diagnoses from computerized tomography, for example. The relevance, social and economic of image retrieval systems has created the necessity of its improvement. Within this context, the content-based image retrieval systems are composed of two stages, the feature extraction and similarity measurement. The stage of similarity is still a challenge due to the wide variety of similarity measurement functions, which can be combined with the different techniques present in the recovery process and return results that aren’t always the most satisfactory. The most common functions used to measure the similarity are the Euclidean and Cosine, but some researchers have noted some limitations in these functions conventional proximity, in the step of search by similarity. For that reason, the Bregman divergences (Kullback Leibler and I-Generalized) have attracted the attention of researchers, due to its flexibility in the similarity analysis. Thus, the aim of this research was to conduct a comparative study over the use of Bregman divergences in relation the Euclidean and Cosine functions, in the step similarity of content-based image retrieval, checking the advantages and disadvantages of each function. For this, it was created a content-based image retrieval system in two stages: offline and online, using approaches BSM, FISM, BoVW and BoVW-SPM. With this system was created three groups of experiments using databases: Caltech101, Oxford and UK-bench. The performance of content-based image retrieval system using the different functions of similarity was tested through of evaluation measures: Mean Average Precision, normalized Discounted Cumulative Gain, precision at k, precision x recall. Finally, this study shows that the use of Bregman divergences (Kullback Leibler and Generalized) obtains better results than the Euclidean and Cosine measures with significant gains for content-based image retrieval.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The estimating of the relative orientation and position of a camera is one of the integral topics in the field of computer vision. The accuracy of a certain Finnish technology company’s traffic sign inventory and localization process can be improved by utilizing the aforementioned concept. The company’s localization process uses video data produced by a vehicle installed camera. The accuracy of estimated traffic sign locations depends on the relative orientation between the camera and the vehicle. This thesis proposes a computer vision based software solution which can estimate a camera’s orientation relative to the movement direction of the vehicle by utilizing video data. The task was solved by using feature-based methods and open source software. When using simulated data sets, the camera orientation estimates had an absolute error of 0.31 degrees on average. The software solution can be integrated to be a part of the traffic sign localization pipeline of the company in question.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade Gama, Programa de Pós-Graduação em Engenharia Biomédica, 2016.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a novel algorithm for tracking the motion of the urethra from trans-perineal ultrasound. Our work is based on the structure-from-motion paradigm and therefore handles well structures with ill-defined and partially missing boundaries. The proposed approach is particularly well-suited for video sequences of low resolution and variable levels of blurriness introduced by anatomical motion of variable speed. Our tracking method identifies feature points on a frame by frame basis using the SURF detector/descriptor. Inter-frame correspondence is achieved using nearest-neighbor matching in the feature space. The motion is estimated using a non-linear bi-quadratic model, which adequately describes the deformable motion of the urethra. Experimental results are promising and show that our algorithm performs well when compared to manual tracking.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a novel algorithm for tracking the motion of the urethra from trans-perineal ultrasound. Our work is based on the structure-from-motion paradigm and therefore handles well structures with ill-defined and partially missing boundaries. The proposed approach is particularly well-suited for video sequences of low resolution and variable levels of blurriness introduced by anatomical motion of variable speed. Our tracking method identifies feature points on a frame by frame basis using the SURF detector/descriptor. Inter-frame correspondence is achieved using nearest-neighbor matching in the feature space. The motion is estimated using a non-linear bi-quadratic model, which adequately describes the deformable motion of the urethra. Experimental results are promising and show that our algorithm performs well when compared to manual tracking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Faces are complex patterns that often differ in only subtle ways. Face recognition algorithms have difficulty in coping with differences in lighting, cameras, pose, expression, etc. We propose a novel approach for facial recognition based on a new feature extraction method called fractal image-set encoding. This feature extraction method is a specialized fractal image coding technique that makes fractal codes more suitable for object and face recognition. A fractal code of a gray-scale image can be divided in two parts – geometrical parameters and luminance parameters. We show that fractal codes for an image are not unique and that we can change the set of fractal parameters without significant change in the quality of the reconstructed image. Fractal image-set coding keeps geometrical parameters the same for all images in the database. Differences between images are captured in the non-geometrical or luminance parameters – which are faster to compute. Results on a subset of the XM2VTS database are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Light Detection and Ranging (LIDAR) has great potential to assist vegetation management in power line corridors by providing more accurate geometric information of the power line assets and vegetation along the corridors. However, the development of algorithms for the automatic processing of LIDAR point cloud data, in particular for feature extraction and classification of raw point cloud data, is in still in its infancy. In this paper, we take advantage of LIDAR intensity and try to classify ground and non-ground points by statistically analyzing the skewness and kurtosis of the intensity data. Moreover, the Hough transform is employed to detected power lines from the filtered object points. The experimental results show the effectiveness of our methods and indicate that better results were obtained by using LIDAR intensity data than elevation data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the size and state of the Internet today, a good quality approach to organizing this mass of information is of great importance. Clustering web pages into groups of similar documents is one approach, but relies heavily on good feature extraction and document representation as well as a good clustering approach and algorithm. Due to the changing nature of the Internet, resulting in a dynamic dataset, an incremental approach is preferred. In this work we propose an enhanced incremental clustering approach to develop a better clustering algorithm that can help to better organize the information available on the Internet in an incremental fashion. Experiments show that the enhanced algorithm outperforms the original histogram based algorithm by up to 7.5%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cascading appearance-based (CAB) feature extraction technique has established itself as the state of the art in extracting dynamic visual speech features for speech recognition. In this paper, we will focus on investigating the effectiveness of this technique for the related speaker verification application. By investigating the speaker verification ability of each stage of the cascade we will demonstrate that the same steps taken to reduce static speaker and environmental information for the speech recognition application also provide similar improvements for speaker recognition. These results suggest that visual speaker recognition can improve considerable when conducted solely through a consideration of the dynamic speech information rather than the static appearance of the speaker's mouth region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes the validity of a Gabor filter bank for feature extraction of solder joint images on Printed Circuit Boards (PCBs). A distance measure based on the Mahalanobis Cosine metric is also presented for classification of five different types of solder joints. From the experimental results, this methodology achieved high accuracy and a well generalised performance. This can be an effective method to reduce cost and improve quality in the production of PCBs in the manufacturing industry.