879 resultados para Relational database
Resumo:
Background The use of the knowledge produced by sciences to promote human health is the main goal of translational medicine. To make it feasible we need computational methods to handle the large amount of information that arises from bench to bedside and to deal with its heterogeneity. A computational challenge that must be faced is to promote the integration of clinical, socio-demographic and biological data. In this effort, ontologies play an essential role as a powerful artifact for knowledge representation. Chado is a modular ontology-oriented database model that gained popularity due to its robustness and flexibility as a generic platform to store biological data; however it lacks supporting representation of clinical and socio-demographic information. Results We have implemented an extension of Chado – the Clinical Module - to allow the representation of this kind of information. Our approach consists of a framework for data integration through the use of a common reference ontology. The design of this framework has four levels: data level, to store the data; semantic level, to integrate and standardize the data by the use of ontologies; application level, to manage clinical databases, ontologies and data integration process; and web interface level, to allow interaction between the user and the system. The clinical module was built based on the Entity-Attribute-Value (EAV) model. We also proposed a methodology to migrate data from legacy clinical databases to the integrative framework. A Chado instance was initialized using a relational database management system. The Clinical Module was implemented and the framework was loaded using data from a factual clinical research database. Clinical and demographic data as well as biomaterial data were obtained from patients with tumors of head and neck. We implemented the IPTrans tool that is a complete environment for data migration, which comprises: the construction of a model to describe the legacy clinical data, based on an ontology; the Extraction, Transformation and Load (ETL) process to extract the data from the source clinical database and load it in the Clinical Module of Chado; the development of a web tool and a Bridge Layer to adapt the web tool to Chado, as well as other applications. Conclusions Open-source computational solutions currently available for translational science does not have a model to represent biomolecular information and also are not integrated with the existing bioinformatics tools. On the other hand, existing genomic data models do not represent clinical patient data. A framework was developed to support translational research by integrating biomolecular information coming from different “omics” technologies with patient’s clinical and socio-demographic data. This framework should present some features: flexibility, compression and robustness. The experiments accomplished from a use case demonstrated that the proposed system meets requirements of flexibility and robustness, leading to the desired integration. The Clinical Module can be accessed in http://dcm.ffclrp.usp.br/caib/pg=iptrans webcite.
Resumo:
Abstract Background Recent medical and biological technology advances have stimulated the development of new testing systems that have been providing huge, varied amounts of molecular and clinical data. Growing data volumes pose significant challenges for information processing systems in research centers. Additionally, the routines of genomics laboratory are typically characterized by high parallelism in testing and constant procedure changes. Results This paper describes a formal approach to address this challenge through the implementation of a genetic testing management system applied to human genome laboratory. We introduced the Human Genome Research Center Information System (CEGH) in Brazil, a system that is able to support constant changes in human genome testing and can provide patients updated results based on the most recent and validated genetic knowledge. Our approach uses a common repository for process planning to ensure reusability, specification, instantiation, monitoring, and execution of processes, which are defined using a relational database and rigorous control flow specifications based on process algebra (ACP). The main difference between our approach and related works is that we were able to join two important aspects: 1) process scalability achieved through relational database implementation, and 2) correctness of processes using process algebra. Furthermore, the software allows end users to define genetic testing without requiring any knowledge about business process notation or process algebra. Conclusions This paper presents the CEGH information system that is a Laboratory Information Management System (LIMS) based on a formal framework to support genetic testing management for Mendelian disorder studies. We have proved the feasibility and showed usability benefits of a rigorous approach that is able to specify, validate, and perform genetic testing using easy end user interfaces.
Resumo:
Diese Dissertation stellt das neu entwickelte SystemRelAndXML vor, das für das Management und dieSpeicherung von hypertextzentrierten XML-Dokumenten und dendazugehörenden XSL-Stylesheets spezialisiert ist. DerAnwendungsbereich sind die Vorlesungsmaterialien anUniversitäten. RelAndXML speichert die XML-formatiertenÜbungsblätter in Textbausteinen und weiterenTeilen in einer speziellen Datenbank.Die Speicherung von XML-Dokumenten in Datenbanken ist seiteinigen Jahren ein wichtiges Thema der Datenbankforschung.Ansätze dafür gliedern sich in solche fürdatenzentrierte und andere für dokumentenzentrierteDokumente. Die Dissertation präsentiert einen Ansatzzur Speicherung von hypertextzentrierten XML-Dokumenten, derAspekte von datenzentrierten und dokumentenzentriertenAnsätzen kombiniert. Der Ansatz erlaubt dieWiederverwendung von Textbausteinen und speichert dieReihenfolge dort, wo sie wichtig ist. Mit RelAndXML könnennicht nur Elemente gespeichert werden, wie mit einigenanderen Ansätzen, sondern auch Attribute, Kommentareund Processing Instructions. Algorithmen für dieFragmentierung und Rekonstruktion von Dokumenten werdenbereit gestellt.RelAndXML wurde mit Java und unter Verwendung einerobjektrelationalen Datenbank implementiert. Das System hateine graphische Benutzungsoberfläche, die das Erstellenund Verändern der XML- und XSL-Dokumente, dasEinfügen von neuen oder schon gespeichertenTextbausteinen sowie das Erzeugen von HTML-Dokumenten zurVeröffentlichung ermöglicht.
Resumo:
Il problema dell'antibiotico-resistenza è un problema di sanità pubblica per affrontare il quale è necessario un sistema di sorveglianza basato sulla raccolta e l'analisi dei dati epidemiologici di laboratorio. Il progetto di dottorato è consistito nello sviluppo di una applicazione web per la gestione di tali dati di antibiotico sensibilità di isolati clinici utilizzabile a livello di ospedale. Si è creata una piattaforma web associata a un database relazionale per avere un’applicazione dinamica che potesse essere aggiornata facilmente inserendo nuovi dati senza dover manualmente modificare le pagine HTML che compongono l’applicazione stessa. E’ stato utilizzato il database open-source MySQL in quanto presenta numerosi vantaggi: estremamente stabile, elevate prestazioni, supportato da una grande comunità online ed inoltre gratuito. Il contenuto dinamico dell’applicazione web deve essere generato da un linguaggio di programmazione tipo “scripting” che automatizzi operazioni di inserimento, modifica, cancellazione, visualizzazione di larghe quantità di dati. E’ stato scelto il PHP, linguaggio open-source sviluppato appositamente per la realizzazione di pagine web dinamiche, perfettamente utilizzabile con il database MySQL. E’ stata definita l’architettura del database creando le tabelle contenenti i dati e le relazioni tra di esse: le anagrafiche, i dati relativi ai campioni, microrganismi isolati e agli antibiogrammi con le categorie interpretative relative al dato antibiotico. Definite tabelle e relazioni del database è stato scritto il codice associato alle funzioni principali: inserimento manuale di antibiogrammi, importazione di antibiogrammi multipli provenienti da file esportati da strumenti automatizzati, modifica/eliminazione degli antibiogrammi precedenti inseriti nel sistema, analisi dei dati presenti nel database con tendenze e andamenti relativi alla prevalenza di specie microbiche e alla chemioresistenza degli stessi, corredate da grafici. Lo sviluppo ha incluso continui test delle funzioni via via implementate usando reali dati clinici e sono stati introdotti appositi controlli e l’introduzione di una semplice e pulita veste grafica.
Resumo:
Moderne ESI-LC-MS/MS-Techniken erlauben in Verbindung mit Bottom-up-Ansätzen eine qualitative und quantitative Charakterisierung mehrerer tausend Proteine in einem einzigen Experiment. Für die labelfreie Proteinquantifizierung eignen sich besonders datenunabhängige Akquisitionsmethoden wie MSE und die IMS-Varianten HDMSE und UDMSE. Durch ihre hohe Komplexität stellen die so erfassten Daten besondere Anforderungen an die Analysesoftware. Eine quantitative Analyse der MSE/HDMSE/UDMSE-Daten blieb bislang wenigen kommerziellen Lösungen vorbehalten. rn| In der vorliegenden Arbeit wurden eine Strategie und eine Reihe neuer Methoden zur messungsübergreifenden, quantitativen Analyse labelfreier MSE/HDMSE/UDMSE-Daten entwickelt und als Software ISOQuant implementiert. Für die ersten Schritte der Datenanalyse (Featuredetektion, Peptid- und Proteinidentifikation) wird die kommerzielle Software PLGS verwendet. Anschließend werden die unabhängigen PLGS-Ergebnisse aller Messungen eines Experiments in einer relationalen Datenbank zusammengeführt und mit Hilfe der dedizierten Algorithmen (Retentionszeitalignment, Feature-Clustering, multidimensionale Normalisierung der Intensitäten, mehrstufige Datenfilterung, Proteininferenz, Umverteilung der Intensitäten geteilter Peptide, Proteinquantifizierung) überarbeitet. Durch diese Nachbearbeitung wird die Reproduzierbarkeit der qualitativen und quantitativen Ergebnisse signifikant gesteigert.rn| Um die Performance der quantitativen Datenanalyse zu evaluieren und mit anderen Lösungen zu vergleichen, wurde ein Satz von exakt definierten Hybridproteom-Proben entwickelt. Die Proben wurden mit den Methoden MSE und UDMSE erfasst, mit Progenesis QIP, synapter und ISOQuant analysiert und verglichen. Im Gegensatz zu synapter und Progenesis QIP konnte ISOQuant sowohl eine hohe Reproduzierbarkeit der Proteinidentifikation als auch eine hohe Präzision und Richtigkeit der Proteinquantifizierung erreichen.rn| Schlussfolgernd ermöglichen die vorgestellten Algorithmen und der Analyseworkflow zuverlässige und reproduzierbare quantitative Datenanalysen. Mit der Software ISOQuant wurde ein einfaches und effizientes Werkzeug für routinemäßige Hochdurchsatzanalysen labelfreier MSE/HDMSE/UDMSE-Daten entwickelt. Mit den Hybridproteom-Proben und den Bewertungsmetriken wurde ein umfassendes System zur Evaluierung quantitativer Akquisitions- und Datenanalysesysteme vorgestellt.
Resumo:
Work on distributed data management commenced shortly after the introduction of the relational model in the mid-1970's. 1970's and 1980's were very active periods for the development of distributed relational database technology, and claims were made that in the following ten years centralized databases will be an “antique curiosity” and most organizations will move toward distributed database managers [1]. That prediction has certainly become true, and all commercial DBMSs today are distributed.
Resumo:
Managing large medical image collections is an increasingly demanding important issue in many hospitals and other medical settings. A huge amount of this information is daily generated, which requires robust and agile systems. In this paper we present a distributed multi-agent system capable of managing very large medical image datasets. In this approach, agents extract low-level information from images and store them in a data structure implemented in a relational database. The data structure can also store semantic information related to images and particular regions. A distinctive aspect of our work is that a single image can be divided so that the resultant sub-images can be stored and managed separately by different agents to improve performance in data accessing and processing. The system also offers the possibility of applying some region-based operations and filters on images, facilitating image classification. These operations can be performed directly on data structures in the database.
Resumo:
This article presents a cartographic system to facilitate cooperative manoeuvres among autonomous vehicles in a well-known environment. The main objective is to design an extended cartographic system to help in the navigation of autonomous vehicles. This system has to allow the vehicles not only to access the reference points needed for navigation, but also noticeable information such as the location and type of traffic signals, the proximity to a crossing, the streets en route, etc. To do this, a hierarchical representation of the information has been chosen, where the information has been stored in two levels. The lower level contains the archives with the Universal Traverse Mercator (UTM) coordinates of the points that define the reference segments to follow. The upper level contains a directed graph with the relational database in which streets, crossings, roundabouts and other points of interest are represented. Using this new system it is possible to know when the vehicle approaches a crossing, what other paths arrive at that crossing, and, should there be other vehicles circulating on those paths and arriving at the crossing, which one has the highest priority. The data obtained from the cartographic system is used by the autonomous vehicles for cooperative manoeuvres.
Resumo:
With the advent of cloud computing, many applications have embraced the ensuing paradigm shift towards modern distributed key-value data stores, like HBase, in order to benefit from the elastic scalability on offer. However, many applications still hesitate to make the leap from the traditional relational database model simply because they cannot compromise on the standard transactional guarantees of atomicity, isolation, and durability. To get the best of both worlds, one option is to integrate an independent transaction management component with a distributed key-value store. In this paper, we discuss the implications of this approach for durability. In particular, if the transaction manager provides durability (e.g., through logging), then we can relax durability constraints in the key-value store. However, if a component fails (e.g., a client or a key-value server), then we need a coordinated recovery procedure to ensure that commits are persisted correctly. In our research, we integrate an independent transaction manager with HBase. Our main contribution is a failure recovery middleware for the integrated system, which tracks the progress of each commit as it is flushed down by the client and persisted within HBase, so that we can recover reliably from failures. During recovery, commits that were interrupted by the failure are replayed from the transaction management log. Importantly, the recovery process does not interrupt transaction processing on the available servers. Using a benchmark, we evaluate the impact of component failure, and subsequent recovery, on application performance.
Resumo:
In this paper, the authors introduce a novel mechanism for data management in a middleware for smart home control, where a relational database and semantic ontology storage are used at the same time in a Data Warehouse. An annotation system has been designed for instructing the storage format and location, registering new ontology concepts and most importantly, guaranteeing the Data Consistency between the two storage methods. For easing the data persistence process, the Data Access Object (DAO) pattern is applied and optimized to enhance the Data Consistency assurance. Finally, this novel mechanism provides an easy manner for the development of applications and their integration with BATMP. Finally, an application named "Parameter Monitoring Service" is given as an example for assessing the feasibility of the system.
Resumo:
R2RML is used to specify transformations of data available in relational databases into materialised or virtual RDF datasets. SPARQL queries evaluated against virtual datasets are translated into SQL queries according to the R2RML mappings, so that they can be evaluated over the underlying relational database engines. In this paper we describe an extension of a well-known algorithm for SPARQL to SQL translation, originally formalised for RDBMS-backed triple stores, that takes into account R2RML mappings. We present the result of our implementation using queries from a synthetic benchmark and from three real use cases, and show that SPARQL queries can be in general evaluated as fast as the SQL queries that would have been generated by SQL experts if no R2RML mappings had been used.
Resumo:
En los últimos años la evolución de la información compartida por internet ha cambiado enormemente, llegando a convertirse en lo que llamamos hoy la Web Semántica. Este término, acuñado en 2004, muestra una manera más “inteligente” de compartir los datos, de tal manera que éstos puedan ser entendibles por una máquina o por cualquier persona en el mundo. Ahora mismo se encuentra en fase de expansión, prueba de ello es la cantidad de grupos de investigación que están actualmente dedicando sus esfuerzos al desarrollo e implementación de la misma y la amplitud de temáticas que tienen sus trabajos. Con la aparición de la Web Semántica, la tendencia de las bases de datos de nueva creación se está empezando a inclinar hacia la creación de ontologías más o menos sencillas que describan las bases de datos y así beneficiarse de las posibilidades de interoperabilidad que aporta. Con el presente trabajo se pretende el estudio de los beneficios que aporta la implementación de una ontología en una base de datos relacional ya creada, los trabajos necesarios para ello y las herramientas necesarias para hacerlo. Para ello se han tomado unos datos de gran interés y, como continuación a su trabajo, se ha implementado la ontología. Estos datos provienen del estudio de un método para la obtención automatizada del linaje de las parcelas registradas en el catastro español. Abstract: In the last years the evolution of the information shared on the Internet has dramatically changed, emerging what is called Semantic Web. This term appeared in 2004, defining a “smarter” way of sharing data. Data that could be understood by machines or by any human around the world. Nowadays, the Semantic Web is in expansion phase, as it can be probed by the amount of research groups working on this approach and the wide thematic range of their work. With the appearance of the Semantic Web, current database technologies are supported by the creation of ontologies which describe them and therefore get a new set of interoperability possibilities from them. This work focuses in the study of the benefits given by the implementation of an ontology in a created relational database, the steps to follow and the tools necessary to get it done. The study has been done by using data of considerable interest, coming from a study of the lineage of parcels registered in the Spanish cadaster. As a continuation of this work an ontology has been implemented.
Resumo:
RDB to RDF Mapping Language (R2RML) es una recomendación del W3C que permite especificar reglas para transformar bases de datos relacionales a RDF. Estos datos en RDF se pueden materializar y almacenar en un sistema gestor de tripletas RDF (normalmente conocidos con el nombre triple store), en el cual se pueden evaluar consultas SPARQL. Sin embargo, hay casos en los cuales la materialización no es adecuada o posible, por ejemplo, cuando la base de datos se actualiza frecuentemente. En estos casos, lo mejor es considerar los datos en RDF como datos virtuales, de tal manera que las consultas SPARQL anteriormente mencionadas se traduzcan a consultas SQL que se pueden evaluar sobre los sistemas gestores de bases de datos relacionales (SGBD) originales. Para esta traducción se tienen en cuenta los mapeos R2RML. La primera parte de esta tesis se centra en la traducción de consultas. Se propone una formalización de la traducción de SPARQL a SQL utilizando mapeos R2RML. Además se proponen varias técnicas de optimización para generar consultas SQL que son más eficientes cuando son evaluadas en sistemas gestores de bases de datos relacionales. Este enfoque se evalúa mediante un benchmark sintético y varios casos reales. Otra recomendación relacionada con R2RML es la conocida como Direct Mapping (DM), que establece reglas fijas para la transformación de datos relacionales a RDF. A pesar de que ambas recomendaciones se publicaron al mismo tiempo, en septiembre de 2012, todavía no se ha realizado un estudio formal sobre la relación entre ellas. Por tanto, la segunda parte de esta tesis se centra en el estudio de la relación entre R2RML y DM. Se divide este estudio en dos partes: de R2RML a DM, y de DM a R2RML. En el primer caso, se estudia un fragmento de R2RML que tiene la misma expresividad que DM. En el segundo caso, se representan las reglas de DM como mapeos R2RML, y también se añade la semántica implícita (relaciones de subclase, 1-N y M-N) que se puede encontrar codificada en la base de datos. Esta tesis muestra que es posible usar R2RML en casos reales, sin necesidad de realizar materializaciones de los datos, puesto que las consultas SQL generadas son suficientemente eficientes cuando son evaluadas en el sistema gestor de base de datos relacional. Asimismo, esta tesis profundiza en el entendimiento de la relación existente entre las dos recomendaciones del W3C, algo que no había sido estudiado con anterioridad. ABSTRACT. RDB to RDF Mapping Language (R2RML) is a W3C recommendation that allows specifying rules for transforming relational databases into RDF. This RDF data can be materialized and stored in a triple store, so that SPARQL queries can be evaluated by the triple store. However, there are several cases where materialization is not adequate or possible, for example, if the underlying relational database is updated frequently. In those cases, RDF data is better kept virtual, and hence SPARQL queries over it have to be translated into SQL queries to the underlying relational database system considering that the translation process has to take into account the specified R2RML mappings. The first part of this thesis focuses on query translation. We discuss the formalization of the translation from SPARQL to SQL queries that takes into account R2RML mappings. Furthermore, we propose several optimization techniques so that the translation procedure generates SQL queries that can be evaluated more efficiently over the underlying databases. We evaluate our approach using a synthetic benchmark and several real cases, and show positive results that we obtained. Direct Mapping (DM) is another W3C recommendation for the generation of RDF data from relational databases. While R2RML allows users to specify their own transformation rules, DM establishes fixed transformation rules. Although both recommendations were published at the same time, September 2012, there has not been any study regarding the relationship between them. The second part of this thesis focuses on the study of the relationship between R2RML and DM. We divide this study into two directions: from R2RML to DM, and from DM to R2RML. From R2RML to DM, we study a fragment of R2RML having the same expressive power than DM. From DM to R2RML, we represent DM transformation rules as R2RML mappings, and also add the implicit semantics encoded in databases, such as subclass, 1-N and N-N relationships. This thesis shows that by formalizing and optimizing R2RML-based SPARQL to SQL query translation, it is possible to use R2RML engines in real cases as the resulting SQL is efficient enough to be evaluated by the underlying relational databases. In addition to that, this thesis facilitates the understanding of bidirectional relationship between the two W3C recommendations, something that had not been studied before.
Resumo:
MetaFam is a comprehensive relational database of protein family information. This web-accessible resource integrates data from several primary sequence and secondary protein family databases. By pooling together the information from these disparate sources, MetaFam is able to provide the most complete protein family sets available. Users are able to explore the interrelationships among these primary and secondary databases using a powerful graphical visualization tool, MetaFamView. Additionally, users can identify corresponding sequence entries among the sequence databases, obtain a quick summary of corresponding families (and their sequence members) among the family databases, and even attempt to classify their own unassigned sequences. Hypertext links to the appropriate source databases are provided at every level of navigation. Global family database statistics and information are also provided. Public access to the data is available at http://metafam.ahc.umn.edu/.
The Zebrafish Information Network (ZFIN): a resource for genetic, genomic and developmental research
Resumo:
The Zebrafish Information Network, ZFIN, is a WWW community resource of zebrafish genetic, genomic and developmental research information (http://zfin.org). ZFIN provides an anatomical atlas and dictionary, developmental staging criteria, research methods, pathology information and a link to the ZFIN relational database (http://zfin.org/ZFIN/). The database, built on a relational, object-oriented model, provides integrated information about mutants, genes, genetic markers, mapping panels, publications and contact information for the zebrafish research community. The database is populated with curated published data, user submitted data and large dataset uploads. A broad range of data types including text, images, graphical representations and genetic maps supports the data. ZFIN incorporates links to other genomic resources that provide sequence and ortholog data. Zebrafish nomenclature guidelines and an automated registration mechanism for new names are provided. Extensive usability testing has resulted in an easy to learn and use forms interface with complex searching capabilities.