932 resultados para Regular Linear System


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A technique for obtaining approximate periodic solutions to nonlinear ordinary differential equations is investigated. The approach is based on defining an equivalent differential equation whose exact periodic solution is known. Emphasis is placed on the mathematical justification of the approach. The relationship between the differential equation error and the solution error is investigated, and, under certain conditions, bounds are obtained on the latter. The technique employed is to consider the equation governing the exact solution error as a two point boundary value problem. Among other things, the analysis indicates that if an exact periodic solution to the original system exists, it is always possible to bound the error by selecting an appropriate equivalent system.

Three equivalence criteria for minimizing the differential equation error are compared, namely, minimum mean square error, minimum mean absolute value error, and minimum maximum absolute value error. The problem is analyzed by way of example, and it is concluded that, on the average, the minimum mean square error is the most appropriate criterion to use.

A comparison is made between the use of linear and cubic auxiliary systems for obtaining approximate solutions. In the examples considered, the cubic system provides noticeable improvement over the linear system in describing periodic response.

A comparison of the present approach to some of the more classical techniques is included. It is shown that certain of the standard approaches where a solution form is assumed can yield erroneous qualitative results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sufficient conditions are derived for the validity of approximate periodic solutions of a class of second order ordinary nonlinear differential equations. An approximate solution is defined to be valid if an exact solution exists in a neighborhood of the approximation.

Two classes of validity criteria are developed. Existence is obtained using the contraction mapping principle in one case, and the Schauder-Leray fixed point theorem in the other. Both classes of validity criteria make use of symmetry properties of periodic functions, and both classes yield an upper bound on a norm of the difference between the approximate and exact solution. This bound is used in a procedure which establishes sufficient stability conditions for the approximated solution.

Application to a system with piecewise linear restoring force (bilinear system) reveals that the approximate solution obtained by the method of averaging is valid away from regions where the response exhibits vertical tangents. A narrow instability region is obtained near one-half the natural frequency of the equivalent linear system. Sufficient conditions for the validity of resonant solutions are also derived, and two term harmonic balance approximate solutions which exhibit ultraharmonic and subharmonic resonances are studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An approximate approach is presented for determining the stationary random response of a general multidegree-of-freedom nonlinear system under stationary Gaussian excitation. This approach relies on defining an equivalent linear system for the nonlinear system. Two particular systems which possess exact solutions have been solved by this approach, and it is concluded that this approach can generate reasonable solutions even for systems with fairly large nonlinearities. The approximate approach has also been applied to two examples for which no exact or approximate solutions were previously available.

Also presented is a matrix algebra approach for determining the stationary random response of a general multidegree-of-freedom linear system. Its derivation involves only matrix algebra and some properties of the instantaneous correlation matricies of a stationary process. It is therefore very direct and straightforward. The application of this matrix algebra approach is in general simpler than that of commonly used approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A engenharia geotécnica é uma das grandes áreas da engenharia civil que estuda a interação entre as construções realizadas pelo homem ou de fenômenos naturais com o ambiente geológico, que na grande maioria das vezes trata-se de solos parcialmente saturados. Neste sentido, o desempenho de obras como estabilização, contenção de barragens, muros de contenção, fundações e estradas estão condicionados a uma correta predição do fluxo de água no interior dos solos. Porém, como a área das regiões a serem estudas com relação à predição do fluxo de água são comumente da ordem de quilômetros quadrados, as soluções dos modelos matemáticos exigem malhas computacionais de grandes proporções, ocasionando sérias limitações associadas aos requisitos de memória computacional e tempo de processamento. A fim de contornar estas limitações, métodos numéricos eficientes devem ser empregados na solução do problema em análise. Portanto, métodos iterativos para solução de sistemas não lineares e lineares esparsos de grande porte devem ser utilizados neste tipo de aplicação. Em suma, visto a relevância do tema, esta pesquisa aproximou uma solução para a equação diferencial parcial de Richards pelo método dos volumes finitos em duas dimensões, empregando o método de Picard e Newton com maior eficiência computacional. Para tanto, foram utilizadas técnicas iterativas de resolução de sistemas lineares baseados no espaço de Krylov com matrizes pré-condicionadoras com a biblioteca numérica Portable, Extensible Toolkit for Scientific Computation (PETSc). Os resultados indicam que quando se resolve a equação de Richards considerando-se o método de PICARD-KRYLOV, não importando o modelo de avaliação do solo, a melhor combinação para resolução dos sistemas lineares é o método dos gradientes biconjugados estabilizado mais o pré-condicionador SOR. Por outro lado, quando se utiliza as equações de van Genuchten deve ser optar pela combinação do método dos gradientes conjugados em conjunto com pré-condicionador SOR. Quando se adota o método de NEWTON-KRYLOV, o método gradientes biconjugados estabilizado é o mais eficiente na resolução do sistema linear do passo de Newton, com relação ao pré-condicionador deve-se dar preferência ao bloco Jacobi. Por fim, há evidências que apontam que o método PICARD-KRYLOV pode ser mais vantajoso que o método de NEWTON-KRYLOV, quando empregados na resolução da equação diferencial parcial de Richards.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O estudo tem como tema os Percursos trilhados pelas famílias para a garantia do direito à educação de crianças com necessidades especiais. Este estudo surgiu pela demanda dos integrantes do Núcleo de Estudos da Infância: Pesquisa & Extensão (NEI:P&E/UERJ), coordenado pela Prof Dr Vera Vasconcellos, em compreender como ocorreu a trajetória de escolarização de crianças acompanhadas em dois estudos realizados em creches do município do Rio de Janeiro, em 2009, após a saída delas das referidas instituições. Os estudos foram: i) Crianças focais: a triangulação educação-família-saúde na creche, realizado em 2008 e 2009 na Creche Institucional Dr. Paulo Niemeyer; e ii) Infância, Educação e Inclusão: um estudo de caso, realizado em 2009 na Creche Municipal de Odetinha Vidal de Oliveira. A pesquisa atual tem como proposta um estudo de follow-up, onde demos continuidade às duas anteriores, a partir da análise do percurso de três (3) famílias (mãe) na tentativa de garantir uma educação inclusiva de qualidade para seus filhos. Inicialmente, foi realizado um levantamento bibliográfico e documental sobre o tema. Em seguida voltou-se às famílias das crianças com o objetivo de investigar de que modo à escolarização foi sendo propiciadas a estas crianças e como suas dificuldades de aprendizagem têm sido entendidas nos espaços educacionais que frequentam. Adotamos o Estudo de Caso como proposta metodológica. Foram realizadas duas entrevistas com as mães das crianças, respectivamente em 2012 e 2013 e solicitado que elas respondessem um questionário (Caracterização Familiar), que delineava o perfil das mesmas destacando suas características sóciodemograficas. Os dados produzidos foram sistematizados através da abordagem de Análise de Conteúdo por temáticas, com ênfase nas trajetórias das crianças e suas famílias em prol da garantia ao direito à Educação. A pesquisa conclui que as crianças do estudo não encontraram espaço no sistema regular de educação, público e/ou privado, em contraste ao que garante os documentos nacionais e municipais. As trajetórias e experiências foram repletas de inseguranças e expectativas negativas por parte das escolas quanto ao desenvolvimento e escolarização das crianças. Conclui também que não é suficiente conhecer os direitos à educação da criança com necessidades especiais, as instituições precisam reconhecer os familiares como parceiros privilegiados na construção de alternativas para a produção de conhecimentos das crianças com necessidades especiais. Os dados demonstraram a importância social das escolas especiais no atendimento especializado de crianças com necessidades especiais. Os lugares ocupados por essas instituições são reconhecido pelas famílias como fundamental rede de apoio e suporte às crianças e famílias no processo de educação e inclusão escolar.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho, será considerado um problema de controle ótimo quadrático para a equação do calor em domínios retangulares com condição de fronteira do tipo Dirichlet é nos quais, a função de controle (dependente apenas no tempo) constitui um termo de fonte. Uma caracterização da solução ótima é obtida na forma de uma equação linear em um espaço de funções reais definidas no intervalo de tempo considerado. Em seguida, utiliza-se uma sequência de projeções em subespaços de dimensão finita para obter aproximações para o controle ótimo, o cada uma das quais pode ser gerada por um sistema linear de dimensão finita. A sequência de soluções aproximadas assim obtidas converge para a solução ótima do problema original. Finalmente, são apresentados resultados numéricos para domínios espaciais de dimensão 1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O estudo do fluxo de água e do transporte escalar em reservatórios hidrelétricos é importante para a determinação da qualidade da água durante as fases iniciais do enchimento e durante a vida útil do reservatório. Neste contexto, um código de elementos finitos paralelo 2D foi implementado para resolver as equações de Navier-Stokes para fluido incompressível acopladas a transporte escalar, utilizando o modelo de programação de troca de mensagens, a fim de realizar simulações em um ambiente de cluster de computadores. A discretização espacial é baseada no elemento MINI, que satisfaz as condições de Babuska-Brezzi (BB), que permite uma formulação mista estável. Todas as estruturas de dados distribuídos necessárias nas diferentes fases do código, como pré-processamento, solução e pós-processamento, foram implementadas usando a biblioteca PETSc. Os sistemas lineares resultantes foram resolvidos usando o método da projeção discreto com fatoração LU por blocos. Para aumentar o desempenho paralelo na solução dos sistemas lineares, foi empregado o método de condensação estática para resolver a velocidade intermediária nos vértices e no centróide do elemento MINI separadamente. Os resultados de desempenho do método de condensação estática com a abordagem da solução do sistema completo foram comparados. Os testes mostraram que o método de condensação estática apresenta melhor desempenho para grandes problemas, às custas de maior uso de memória. O desempenho de outras partes do código também são apresentados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lehmer (1929) analisa matematicamente o método do passo uniforme para construção de quadrados mágicos de ordem impar. Ele divide sua análise em várias etapas. Na primeira delas, envolvendo a discussão de condições necessárias e suficientes para o preenchimento do quadrado pelo método, o autor afirma que se dois números guardarem entre si uma certa relação, eles serão designados a ocupar a mesma célula do quadrado causando seu não preenchimento. A análise do preenchimento pelo método do passo uniforme envolve a resolução de um sistema linear módulo n. Nesse trabalho, discutimos o comportamento das soluções desse sistema quando o método falha no preenchimento. Como consequência, concluímos que números que guardam a relação mencionada nunca ocupam a mesma célula. A análise das condições necessárias e suficientes para obter quadrados mágicos segundo a definição de Lehmer (1929) envolve a resolução de equações de congruências lineares a duas variáveis. Nesse trabalho, detalhamos os resultados de Lehmer (1929). A análise das condições necessárias e suficientes para obtenção de quadrados mágicos, como são reconhecidos usualmente, também envolve a resolução de equações de congruências lineares a duas variáveis. Discutimos o comportamento das soluções dessas equações para obter diagonais principais mágicas. Como consequência, mostramos que diagonais principais mágicas são obtidas se e somente se as coordenadas iniciais guardarem certas relações

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper develops an algorithm for finding sparse signals from limited observations of a linear system. We assume an adaptive Gaussian model for sparse signals. This model results in a least square problem with an iteratively reweighted L2 penalty that approximates the L0-norm. We propose a fast algorithm to solve the problem within a continuation framework. In our examples, we show that the correct sparsity map and sparsity level are gradually learnt during the iterations even when the number of observations is reduced, or when observation noise is present. In addition, with the help of sophisticated interscale signal models, the algorithm is able to recover signals to a better accuracy and with reduced number of observations than typical L1-norm and reweighted L1 norm methods. ©2010 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper develops a technique for improving the region of attraction of a robust variable horizon model predictive controller. It considers a constrained discrete-time linear system acted upon by a bounded, but unknown time-varying state disturbance. Using constraint tightening for robustness, it is shown how the tightening policy, parameterised as direct feedback on the disturbance, can be optimised to increase the volume of an inner approximation to the controller's true region of attraction. Numerical examples demonstrate the benefits of the policy in increasing region of attraction volume and decreasing the maximum prediction horizon length. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a moving mesh method suitable for solving two-dimensional and axisymmetric three-liquid flows with triple junction points. This method employs a body-fitted unstructured mesh where the interfaces between liquids are lines of the mesh system, and the triple junction points (if exist) are mesh nodes. To enhance the accuracy and the efficiency of the method, the mesh is constantly adapted to the evolution of the interfaces by refining and coarsening the mesh locally; dynamic boundary conditions on interfaces, in particular the triple points, are therefore incorporated naturally and accurately in a Finite- Element formulation. In order to allow pressure discontinuity across interfaces, double-values of pressure are necessary for interface nodes and triple-values of pressure on triple junction points. The resulting non-linear system of mass and momentum conservation is then solved by an Uzawa method, with the zero resultant condition on triple points reinforced at each time step. The method is used to investigate the rising of a liquid drop with an attached bubble in a lighter liquid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This note analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a Stable nonlinear system. It is shown that the instability of the zeros of the linear System can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static-state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a stable nonlinear system. It is shown that the instability of the zeros of the linear system can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A three-dimensional MHD solver is described in the paper. The solver simulates reacting flows with nonequilibrium between translational-rotational, vibrational and electron translational modes. The conservation equations are discretized with implicit time marching and the second-order modified Steger-Warming scheme, and the resulted linear system is solved iteratively with Newton-Krylov-Schwarz method that is implemented by PETS,: package. The results of convergence tests arc plotted, which show good scalability and convergence around twice faster when compared with the DPLR method. Then five test runs are conducted simulating the experiments done at the NASA Ames MHD channel, and the calculated pressures, temperatures, electrical conductivity, back EMF, load factors and flow accelerations are shown to agree with the experimental data. Our computation shows that the electrical conductivity distribution is not uniform in the powered section of the MHD channel, and that it is important to include Joule heating in order to calculate the correct conductivity and the MHD acceleration.