952 resultados para Recombination and trapping
Resumo:
Urines from patients administered mutagenic antineoplastic drugs were significantly mutagenic in the Ames assay, and hence may pose a genotoxic hazard to hospital personnel or family members caring for the patient. The urines were tested for mutagenicity in several different strains of Salmonella typhimurium that were uvr positive or negative (TA98, TA100, TA102, UTH8413, UTH8414). The urines were fractionated by high pressure liquid chromatography (HPLC) and the fractions assayed for mutagenicity in the strains in which the whole urine was mutagenic. Only fractions of urines containing the parent compound (cisplatin, doxorubicin, or mitomycin) were mutagenic; no other fraction showed significant mutagenicity. However, urine containing cyclophosphamide had two fractions that were mutagenic. One fraction, the fraction containing cyclophosphamide, required metabolic activation for mutagenicity. The other fraction did not require activation for mutagenicity.^ The chemical and mutagenic stability of these urines at room temperature was assayed over a 14 day period. The parent compound degraded within the first seven days, but the urines remained mutagenic. Cis-platinum was chemically stable in the urine; however, the urine decreased in mutagenicity. The decrease was probably the result of stable ligands binding to the platinum.^ Inactivation methods were developed to reduce the genotoxic hazard. Urine containing cisplatin was inactivated by complexing the cisplatin with diethyldithiocarbamate (DDTC). Oxidation with NaOCl of urines containing mitomycin and doxorubicin (sodium thiosulfate must be added to the doxorubicin urine) results in mutagenic inactivation. Inactivation of urine containing cyclophosphamide requires oxidation with alkaline potassium permaganate and trapping of active degradation products with sodium thiosulfate. Urines containing these drugs can be inactivated, but not always by the same method that inactivates the drug alone in solution. Therefore, in the future development of inactivation methods, both chemical and mutagenic assays are necessary to determine effectiveness. Methods of inactivation of mutagenic excreta developed in this study are both effective and practical. ^
Resumo:
The molar ratios of atmospheric gases change during dissolution in water due to differences in their relative solubilities. We exploited this characteristic to develop a tool to clarify the origin of ice formations in permafrost regions. Extracted from ice, molar gas ratios can distinguish buried glacier ice from intrasedimental ground ice formed by freezing groundwaters. An extraction line was built to isolate gases from ice by melting and trapping with liquid He, followed by analysis of N2, O2, Ar, 18O-O2 and 15N-N2, by continuous flow mass spectrometry. The method was tested using glacier ice, aufeis ice (river icing) and intrasedimental ground ice from sites in the Canadian Arctic. O2/Ar and N2/Ar ratios clearly distinguish between atmospheric gas in glacial ice and gases from intrasedimental ground ice, which are exsolved from freezing water. 615NN2 and 618OO2 in glacier ice, aufeis ice and intrasedimental ground ice do not show clear distinguishing trends as they are affected by various physical processes during formation such as gravitational settling, excess air addition, mixing with snow pack, and respiration.
Resumo:
The detailed study of the deterioration suffered by the materials of the components of a nuclear facility, in particular those forming part of the reactor core, is a topic of great interest which importance derives in large technological and economic implications. Since changes in the atomic-structural properties of relevant components pose a risk to the smooth operation with clear consequences for security and life of the plant, controlling these factors is essential in any development of engineering design and implementation. In recent times, tungsten has been proposed as a structural material based on its good resistance to radiation, but still needs to be done an extensive study on the influence of temperature on the behavior of this material under radiation damage. This work aims to contribute in this regard. Molecular Dynamics (MD) simulations were carried out to determine the influence of temperature fluctuations on radiation damage production and evolution in Tungsten. We have particularly focused our study in the dynamics of defect creation, recombination, and diffusion properties. PKA energies were sampled in a range from 5 to 50 KeV. Three different temperature scenarios were analyzed, from very low temperatures (0-200K), up to high temperature conditions (300-500 K). We studied the creation of defects, vacancies and interstitials, recombination rates, diffusion properties, cluster formation, their size and evolution. Simulations were performed using Lammps and the Zhou EAM potential for W
Resumo:
Abstract This work is a contribution to the research and development of the intermediate band solar cell (IBSC), a high efficiency photovoltaic concept that features the advantages of both low and high bandgap solar cells. The resemblance with a low bandgap solar cell comes from the fact that the IBSC hosts an electronic energy band -the intermediate band (IB)- within the semiconductor bandgap. This IB allows the collection of sub-bandgap energy photons by means of two-step photon absorption processes, from the valence band (VB) to the IB and from there to the conduction band (CB). The exploitation of these low energy photons implies a more efficient use of the solar spectrum. The resemblance of the IBSC with a high bandgap solar cell is related to the preservation of the voltage: the open-circuit voltage (VOC) of an IBSC is not limited by any of the sub-bandgaps (involving the IB), but only by the fundamental bandgap (defined from the VB to the CB). Nevertheless, the presence of the IB allows new paths for electronic recombination and the performance of the IBSC is degraded at 1 sun operation conditions. A theoretical argument is presented regarding the need for the use of concentrated illumination in order to circumvent the degradation of the voltage derived from the increase in the recombi¬nation. This theory is supported by the experimental verification carried out with our novel characterization technique consisting of the acquisition of photogenerated current (IL)-VOC pairs under low temperature and concentrated light. Besides, at this stage of the IBSC research, several new IB materials are being engineered and our novel character¬ization tool can be very useful to provide feedback on their capability to perform as real IBSCs, verifying or disregarding the fulfillment of the “voltage preservation” principle. An analytical model has also been developed to assess the potential of quantum-dot (QD)-IBSCs. It is based on the calculation of band alignment of III-V alloyed heterojunc-tions, the estimation of the confined energy levels in a QD and the calculation of the de¬tailed balance efficiency. Several potentially useful QD materials have been identified, such as InAs/AlxGa1-xAs, InAs/GaxIn1-xP, InAs1-yNy/AlAsxSb1-x or InAs1-zNz/Alx[GayIn1-y]1-xP. Finally, a model for the analysis of the series resistance of a concentrator solar cell has also been developed to design and fabricate IBSCs adapted to 1,000 suns. Resumen Este trabajo contribuye a la investigación y al desarrollo de la célula solar de banda intermedia (IBSC), un concepto fotovoltaico de alta eficiencia que auna las ventajas de una célula solar de bajo y de alto gap. La IBSC se parece a una célula solar de bajo gap (o banda prohibida) en que la IBSC alberga una banda de energía -la banda intermedia (IB)-en el seno de la banda prohibida. Esta IB permite colectar fotones de energía inferior a la banda prohibida por medio de procesos de absorción de fotones en dos pasos, de la banda de valencia (VB) a la IB y de allí a la banda de conducción (CB). El aprovechamiento de estos fotones de baja energía conlleva un empleo más eficiente del espectro solar. La semejanza antre la IBSC y una célula solar de alto gap está relacionada con la preservación del voltaje: la tensión de circuito abierto (Vbc) de una IBSC no está limitada por ninguna de las fracciones en las que la IB divide a la banda prohibida, sino que está únicamente limitada por el ancho de banda fundamental del semiconductor (definido entre VB y CB). No obstante, la presencia de la IB posibilita nuevos caminos de recombinación electrónica, lo cual degrada el rendimiento de la IBSC a 1 sol. Este trabajo argumenta de forma teórica la necesidad de emplear luz concentrada para evitar compensar el aumento de la recom¬binación de la IBSC y evitar la degradación del voltage. Lo anterior se ha verificado experimentalmente por medio de nuestra novedosa técnica de caracterización consistente en la adquisicin de pares de corriente fotogenerada (IL)-VOG en concentración y a baja temperatura. En esta etapa de la investigación, se están desarrollando nuevos materiales de IB y nuestra herramienta de caracterizacin está siendo empleada para realimentar el proceso de fabricación, comprobando si los materiales tienen capacidad para operar como verdaderas IBSCs por medio de la verificación del principio de preservación del voltaje. También se ha desarrollado un modelo analítico para evaluar el potencial de IBSCs de puntos cuánticos. Dicho modelo está basado en el cálculo del alineamiento de bandas de energía en heterouniones de aleaciones de materiales III-V, en la estimación de la energía de los niveles confinados en un QD y en el cálculo de la eficiencia de balance detallado. Este modelo ha permitido identificar varios materiales de QDs potencialmente útiles como InAs/AlxGai_xAs, InAs/GaxIni_xP, InAsi_yNy/AlAsxSbi_x ó InAsi_zNz/Alx[GayIni_y]i_xP. Finalmente, también se ha desarrollado un modelado teórico para el análisis de la resistencia serie de una célula solar de concentración. Gracias a dicho modelo se han diseñado y fabricado IBSCs adaptadas a 1.000 soles.
Resumo:
ZnO nanofibre networks (NFNs) were grown by vapour transport method on Si-based substrates. One type of substrate was SiO2 thermally grown on Si and another consisted of a Si wafer onto which Si nanowires (NWs) had been grown having Au nanoparticles catalysts. The ZnO-NFN morphology was observed by scanning electron microscopy on samples grown at 600 °C and 720 °C substrate temperature, while an focused ion beam was used to study the ZnO NFN/Si NWs/Si and ZnO NFN/SiO2 interfaces. Photoluminescence, electrical conductance and photoconductance of ZnO-NFN was studied for the sample grown on SiO2. The photoluminescence spectra show strong peaks due to exciton recombination and lattice defects. The ZnO-NFN presents quasi-persistent photoconductivity effects and ohmic I-V characteristics which become nonlinear and hysteretic as the applied voltage is increased. The electrical conductance as a function of temperature can be described by a modified three dimensional variable hopping model with nanometer-ranged typical hopping distances.
Resumo:
Kinetic Monte Carlo (KMC) is a widely used technique to simulate the evolution of radiation damage inside solids. Despite de fact that this technique was developed several decades ago, there is not an established and easy to access simulating tool for researchers interested in this field, unlike in the case of molecular dynamics or density functional theory calculations. In fact, scientists must develop their own tools or use unmaintained ones in order to perform these types of simulations. To fulfil this need, we have developed MMonCa, the Modular Monte Carlo simulator. MMonCa has been developed using professional C++ programming techniques and has been built on top of an interpreted language to allow having a powerful yet flexible, robust but customizable and easy to access modern simulator. Both non lattice and Lattice KMC modules have been developed. We will present in this conference, for the first time, the MMonCa simulator. Along with other (more detailed) contributions in this meeting, the versatility of MMonCa to study a number of problems in different materials (particularly, Fe and W) subject to a wide range of conditions will be shown. Regarding KMC simulations, we have studied neutron-generated cascade evolution in Fe (as a model material). Starting with a Frenkel pair distribution we have followed the defect evolution up to 450 K. Comparison with previous simulations and experiments shows excellent agreement. Furthermore, we have studied a more complex system (He-irradiated W:C) using a previous parametrization [1]. He-irradiation at 4 K followed by isochronal annealing steps up to 500 K has been simulated with MMonCa. The He energy was 400 eV or 3 keV. In the first case, no damage is associated to the He implantation, whereas in the second one, a significant Frenkel pair concentration (evolving into complex clusters) is associated to the He ions. We have been able to explain He desorption both in the absence and in the presence of Frenkel pairs and we have also applied MMonCa to high He doses and fluxes at elevated temperatures. He migration and trapping dominate the kinetics of He desorption. These processes will be discussed and compared to experimental results. [1] C.S. Becquart et al. J. Nucl. Mater. 403 (2010) 75
Resumo:
Using photocatalysis for energy applications depends, more than for environmental purposes or selective chemical synthesis, on converting as much of the solar spectrum as possible; the best photocatalyst, titania, is far from this. Many efforts are pursued to use better that spectrum in photocatalysis, by doping titania or using other materials (mainly oxides, nitrides and sulphides) to obtain a lower bandgap, even if this means decreasing the chemical potential of the electron-hole pairs. Here we introduce an alternative scheme, using an idea recently proposed for photovoltaics: the intermediate band (IB) materials. It consists in introducing in the gap of a semiconductor an intermediate level which, acting like a stepstone, allows an electron jumping from the valence band to the conduction band in two steps, each one absorbing one sub-bandgap photon. For this the IB must be partially filled, to allow both sub-bandgap transitions to proceed at comparable rates; must be made of delocalized states to minimize nonradiative recombination; and should not communicate electronically with the outer world. For photovoltaic use the optimum efficiency so achievable, over 1.5 times that given by a normal semiconductor, is obtained with an overall bandgap around 2.0 eV (which would be near-optimal also for water phtosplitting). Note that this scheme differs from the doping principle usually considered in photocatalysis, which just tries to decrease the bandgap; its aim is to keep the full bandgap chemical potential but using also lower energy photons. In the past we have proposed several IB materials based on extensively doping known semiconductors with light transition metals, checking first of all with quantum calculations that the desired IB structure results. Subsequently we have synthesized in powder form two of them: the thiospinel In2S3 and the layered compound SnS2 (having bandgaps of 2.0 and 2.2 eV respectively) where the octahedral cation is substituted at a â?10% level with vanadium, and we have verified that this substitution introduces in the absorption spectrum the sub-bandgap features predicted by the calculations. With these materials we have verified, using a simple reaction (formic acid oxidation), that the photocatalytic spectral response is indeed extended to longer wavelengths, being able to use even 700 nm photons, without largely degrading the response for above-bandgap photons (i.e. strong recombination is not induced) [3b, 4]. These materials are thus promising for efficient photoevolution of hydrogen from water; work on this is being pursued, the results of which will be presented.
Resumo:
This paper describes the dielectrophoretic potential created by the evanescent electric field acting on a particle near a photovoltaic crystal surface depending on the crystal cut. This electric field is obtained from the steady state solution of the Kukhtarev equations for the photovoltaic effect, where the diffusion term has been disregarded. First, the space charge field generated by a small, square, light spot where d _ l (being d a side of the square and l the crystal thickness) is studied. The surface charge density generated in both geometries is calculated and compared as their relation determines the different properties of the dielectrophoretic potential for both cuts. The shape of the dielectrophoretic potential is obtained and compared for several distances to the sample. Afterwards other light patterns are studied by the superposition of square spots, and the resulting trapping profiles are analysed. Finally the surface charge densities and trapping profiles for different d/l relations are studied.
Resumo:
Homologous recombination contributes both to the generation of allelic diversity and to the preservation of genetic information. In plants, a lack of suitable experimental material has prevented studies of the regulatory and enzymatic aspects of recombination in somatic and meiotic cells. We have isolated nine Arabidopsis thaliana mutants hypersensitive to x-ray irradiation (xrs) and examined their recombination properties. For the three xrs loci described here, single recessive mutations were found to confer simultaneous hypersensitivities to the DNA-damaging chemicals mitomycin C (MMCs) and/or methyl methanesulfonate (MMSs) and alterations in homologous recombination. Mutant xrs9 (Xrays, MMSs) is reduced in both somatic and meiotic recombination and resembles yeast mutants of the rad52 epistatic group. xrs11 (Xrays, MMCs) is deficient in the x-ray-mediated stimulation of homologous recombination in somatic cells in a manner suggesting a specific signaling defect. xrs4 (Xrays, MMSs, MMCs) has a significant deficiency in somatic recombination, but this is accompanied by meiotic hyper-recombination. A corresponding phenotype has not been reported in other systems and thus this indicates a novel, plant-specific regulatory circuit linking mitotic and meiotic recombination.
Resumo:
Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RAD10 gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogenous APRT locus in ERCC1− and ERCC1+ cells. To detect the full spectrum of gene-altering events, we used a loss-of-function assay in which the parental APRT+ tandem duplication could give rise to APRT− cells by homologous recombination, gene rearrangement, or point mutation. Measurement of rates and analysis of individual APRT− products indicated that gene rearrangements (principally deletions) were increased at least 50-fold, whereas homologous recombination was affected little. The formation of deletions is not caused by a general effect of the ERCC1 deficiency on gene stability, because ERCC1− cell lines with a single wild-type copy of the APRT gene yielded no increase in deletions. Thus, deletion formation is dependent on the tandem duplication, and presumably the process of homologous recombination. Recombination-dependent deletion formation in ERCC1− cells is supported by a significant decrease in a particular class of crossover products that are thought to arise by repair of a heteroduplex intermediate in recombination. We suggest that the ERCC1 gene product in mammalian cells is involved in the processing of heteroduplex intermediates in recombination and that the misprocessed intermediates in ERCC1− cells are repaired by illegitimate recombination.
Resumo:
Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination, and repair in bacteria and eukarya. We report here the identification and characterization of the SSB of an archaeon, Methanococcus jannaschii. The M. jannaschii SSB (mjaSSB) has significant amino acid sequence similarity to the eukaryotic SSB, replication protein A (RPA), and contains four tandem repeats of the core single-stranded DNA (ssDNA) binding domain originally defined by structural studies of RPA. Homologous SSBs are encoded by the genomes of other archaeal species, including Methanobacterium thermoautotrophicum and Archaeoglobus fulgidus. The purified mjaSSB binds to ssDNA with high affinity and selectivity. The apparent association constant for binding to ssDNA is similar to that of RPA under comparable experimental conditions, and the affinity for ssDNA exceeds that for double-stranded DNA by at least two orders of magnitude. The binding site size for mjaSSB is ≈20 nucleotides. Given that RPA is related to mjaSSB at the sequence level and to Escherichia coli SSB at the structural level, we conclude that the SSBs of archaea, eukarya, and bacteria share a common core ssDNA-binding domain. This ssDNA-binding domain was presumably present in the common ancestor to all three major branches of life.
Resumo:
Patients with mutations in the thyroid hormone receptor β (TRβ) gene manifest resistance to thyroid hormone (RTH), resulting in a constellation of variable phenotypic abnormalities. To understand the molecular basis underlying the action of mutant TRβ in vivo, we generated mice with a targeted mutation in the TRβ gene (TRβPV; PV, mutant thyroid hormone receptor kindred PV) by using homologous recombination and the Cre/loxP system. Mice expressing a single PVallele showed the typical abnormalities of thyroid function found in heterozygous humans with RTH. Homozygous PV mice exhibit severe dysfunction of the pituitary–thyroid axis, impaired weight gains, and abnormal bone development. This phenotype is distinct from that seen in mice with a null mutation in the TRβ gene. Importantly, we identified abnormal expression patterns of several genes in tissues of TRβPV mice, demonstrating the interference of the mutant TR with the gene regulatory functions of the wild-type TR in vivo. These results show that the actions of mutant and wild-type TRβ in vivo are distinct. This model allows further study of the molecular action of mutant TR in vivo, which could lead to better treatment for RTH patients.
Resumo:
Genetic recombination of plus-strand RNA viruses is an important process for promoting genetic variation. By using genetically marked poliovirus RNAs, we have demonstrated that genetic recombination can occur in a cell-free system that generates infective virus from added poliovirus RNA. Recombinant polioviruses were isolated, and the region of crossing over was roughly mapped. Recombinants could be isolated even under conditions where the yield of viruses from one of the parental RNAs was depressed to levels comparable to or less than the yield of recombinant viruses, an observation suggesting that only one of the recombining RNAs needs to be replication-competent. The generation of poliovirus recombinants in a cell-free system offers new possibilities for studying recombination and evolution of RNA viruses.
Resumo:
Single-stranded DNA binding proteins (SSBs) play central roles in cellular and viral processes involving the generation of single-stranded DNA. These include DNA replication, homologous recombination and DNA repair pathways. SSBs bind DNA using four ‘OB-fold’ (oligonucleotide/oligosaccharide binding fold) domains that can be organised in a variety of overall quaternary structures. Thus eubacterial SSBs are homotetrameric whilst the eucaryal RPA protein is a heterotrimer and euryarchaeal proteins vary significantly in their subunit compositions. We demonstrate that the crenarchaeal SSB protein is an abundant protein with a unique structural organisation, existing as a monomer in solution and multimerising on DNA binding. The protein binds single-stranded DNA distributively with a binding site size of ~5 nt per monomer. Sulfolobus SSB lacks the zinc finger motif found in the eucaryal and euryarchaeal proteins, possessing instead a flexible C-terminal tail, sensitive to trypsin digestion, that is not required for DNA binding. In comparison with Escherichia coli SSB, the tail may play a role in protein–protein interactions during DNA replication and repair.
Resumo:
We have developed a universally applicable system for conditional gene expression in embryonic stem (ES) cells that relies on tamoxifen-dependent Cre recombinase-loxP site-mediated recombination and bicistronic gene-trap expression vectors that allow transgene expression from endogenous cellular promoters. Two vectors were introduced into the genome of recipient ES cells, successively: (i) a bicistronic gene-trap vector encoding the β-galactosidase/neoR fusion protein and the Cre-ERT2 (Cre recombinase fused to a mutated ligand-binding domain of the human estrogen receptor) and (ii) a bicistronic gene-trap vector encoding the hygroR protein and the human alkaline phosphatase (hAP), the expression of which is prevented by tandemly repeated stop-of-transcription sequences flanked by loxP sites. In selected clones, hAP expression was shown to be regulated accurately by 4′hydroxy-tamoxifen. Strict hormone-dependent expression of hAP was achieved (i) in vitro in undifferentiated ES cells and embryoid bodies, (ii) in vivo in virtually all the tissues of the 10-day-old chimeric fetus (after injection of 4′hydroxy-tamoxifen to foster mothers), and (iii) ex vivo in primary embryonic fibroblasts isolated from chimeric fetuses. Therefore, this approach can be applied to drive conditional expression of virtually any transgene in a large variety of cell types, both in vitro and in vivo.