946 resultados para Real-world semantics
Resumo:
Conceptual modelling is an activity undertaken during information systems development work to build a representation of selected semantics about some real-world domain. Ontological theories have been developed to account for the structure and behavior of the real world in general. In this paper, I discuss why ontological theories can be used to inform conceptual modelling research, practice, and pedagogy. I provide examples from my research to illustrate how a particular ontological theory has enabled me to improve my understanding of certain conceptual modelling practices and grammars. I describe, also, how some colleagues and I have used this theory to generate several counter-intuitive, sometimes surprising predictions about widely advocated conceptual modelling practices - predictions that subsequently were supported in empirical research we undertook. Finally, I discuss several possibilities and pitfalls I perceived to be associated with our using ontological theories to underpin research on conceptual modelling.
Resumo:
Arquitetura Corporativa promove o estabelecimento de uma visão holística da estrutura e forma de trabalho de uma organização. Um dos aspectos abordados em Arquitetura Corporativa está associada a "estrutura ativa" da organização, que diz respeito a “quem" realiza as atividades organizacionais. Várias abordagens têm sido propostas a fim de proporcionar um meio para a representação de Arquitetura Corporativa, entre as quais ARIS, RM-ODP, UPDM e ArchiMate. Apesar da aceitação por parte da comunidade, as abordagens existentes se concentram em propósitos diferentes, têm limitações de escopo e algumas não têm semântica de mundo real bem definida. Além das abordagens de modelagem, muitas abordagens de ontologias têm sido propostas, a fim de descrever o domínio de estrutura ativa, incluindo as ontologias de SUPER Project, TOVE, Enterprise Ontology e W3C Org Ontology. Embora especificadas para fundamentação semântica e negociação de significado, algumas das abordagens propostas têm fins específicos e cobertura limitada. Além disso, algumas das abordagens não são definidas usando linguagens formais e outras são especificadas usando linguagens sem semântica bem definida. Este trabalho apresenta uma ontologia de referência bem fundamentada para o domínio organizacional. A ontologia organizacional de referência apresentada abrange os aspectos básicos discutidos na literatura organizacional, tais como divisão do trabalho, relações sociais e classificação das unidades estruturais. Além disso, também abrange os aspectos organizacionais definidos em abordagens existentes, levando em consideração tanto abordagens de modelagem quanto abordagens ontológicas. A ontologia resultante é especificada em OntoUML e estende os conceitos sociais de UFO-C.
Resumo:
This paper presents an algorithm to efficiently generate the state-space of systems specified using the IOPT Petri-net modeling formalism. IOPT nets are a non-autonomous Petri-net class, based on Place-Transition nets with an extended set of features designed to allow the rapid prototyping and synthesis of system controllers through an existing hardware-software co-design framework. To obtain coherent and deterministic operation, IOPT nets use a maximal-step execution semantics where, in a single execution step, all enabled transitions will fire simultaneously. This fact increases the resulting state-space complexity and can cause an arc "explosion" effect. Real-world applications, with several million states, will reach a higher order of magnitude number of arcs, leading to the need for high performance state-space generator algorithms. The proposed algorithm applies a compilation approach to read a PNML file containing one IOPT model and automatically generate an optimized C program to calculate the corresponding state-space.
Resumo:
We aimed to determine whether human subjects' reliance on different sources of spatial information encoded in different frames of reference (i.e., egocentric versus allocentric) affects their performance, decision time and memory capacity in a short-term spatial memory task performed in the real world. Subjects were asked to play the Memory game (a.k.a. the Concentration game) without an opponent, in four different conditions that controlled for the subjects' reliance on egocentric and/or allocentric frames of reference for the elaboration of a spatial representation of the image locations enabling maximal efficiency. We report experimental data from young adult men and women, and describe a mathematical model to estimate human short-term spatial memory capacity. We found that short-term spatial memory capacity was greatest when an egocentric spatial frame of reference enabled subjects to encode and remember the image locations. However, when egocentric information was not reliable, short-term spatial memory capacity was greater and decision time shorter when an allocentric representation of the image locations with respect to distant objects in the surrounding environment was available, as compared to when only a spatial representation encoding the relationships between the individual images, independent of the surrounding environment, was available. Our findings thus further demonstrate that changes in viewpoint produced by the movement of images placed in front of a stationary subject is not equivalent to the movement of the subject around stationary images. We discuss possible limitations of classical neuropsychological and virtual reality experiments of spatial memory, which typically restrict the sensory information normally available to human subjects in the real world.
Resumo:
Goal Programming (GP) is an important analytical approach devised to solve many realworld problems. The first GP model is known as Weighted Goal Programming (WGP). However, Multi-Choice Aspirations Level (MCAL) problems cannot be solved by current GP techniques. In this paper, we propose a Multi-Choice Mixed Integer Goal Programming model (MCMI-GP) for the aggregate production planning of a Brazilian sugar and ethanol milling company. The MC-MIGP model was based on traditional selection and process methods for the design of lots, representing the production system of sugar, alcohol, molasses and derivatives. The research covers decisions on the agricultural and cutting stages, sugarcane loading and transportation by suppliers and, especially, energy cogeneration decisions; that is, the choice of production process, including storage stages and distribution. The MCMIGP allows decision-makers to set multiple aspiration levels for their problems in which the more/higher, the better and the less/lower, the better in the aspiration levels are addressed. An application of the proposed model for real problems in a Brazilian sugar and ethanol mill was conducted; producing interesting results that are herein reported and commented upon. Also, it was made a comparison between MCMI GP and WGP models using these real cases. © 2013 Elsevier Inc.
Resumo:
Cost, performance and availability considerations are forcing even the most conservative high-integrity embedded real-time systems industry to migrate from simple hardware processors to ones equipped with caches and other acceleration features. This migration disrupts the practices and solutions that industry had developed and consolidated over the years to perform timing analysis. Industry that are confident with the efficiency/effectiveness of their verification and validation processes for old-generation processors, do not have sufficient insight on the effects of the migration to cache-equipped processors. Caches are perceived as an additional source of complexity, which has potential for shattering the guarantees of cost- and schedule-constrained qualification of their systems. The current industrial approach to timing analysis is ill-equipped to cope with the variability incurred by caches. Conversely, the application of advanced WCET analysis techniques on real-world industrial software, developed without analysability in mind, is hardly feasible. We propose a development approach aimed at minimising the cache jitters, as well as at enabling the application of advanced WCET analysis techniques to industrial systems. Our approach builds on:(i) identification of those software constructs that may impede or complicate timing analysis in industrial-scale systems; (ii) elaboration of practical means, under the model-driven engineering (MDE) paradigm, to enforce the automated generation of software that is analyzable by construction; (iii) implementation of a layout optimisation method to remove cache jitters stemming from the software layout in memory, with the intent of facilitating incremental software development, which is of high strategic interest to industry. The integration of those constituents in a structured approach to timing analysis achieves two interesting properties: the resulting software is analysable from the earliest releases onwards - as opposed to becoming so only when the system is final - and more easily amenable to advanced timing analysis by construction, regardless of the system scale and complexity.
Resumo:
The development of High-Integrity Real-Time Systems has a high footprint in terms of human, material and schedule costs. Factoring functional, reusable logic in the application favors incremental development and contains costs. Yet, achieving incrementality in the timing behavior is a much harder problem. Complex features at all levels of the execution stack, aimed to boost average-case performance, exhibit timing behavior highly dependent on execution history, which wrecks time composability and incrementaility with it. Our goal here is to restitute time composability to the execution stack, working bottom up across it. We first characterize time composability without making assumptions on the system architecture or the software deployment to it. Later, we focus on the role played by the real-time operating system in our pursuit. Initially we consider single-core processors and, becoming less permissive on the admissible hardware features, we devise solutions that restore a convincing degree of time composability. To show what can be done for real, we developed TiCOS, an ARINC-compliant kernel, and re-designed ORK+, a kernel for Ada Ravenscar runtimes. In that work, we added support for limited-preemption to ORK+, an absolute premiere in the landscape of real-word kernels. Our implementation allows resource sharing to co-exist with limited-preemptive scheduling, which extends state of the art. We then turn our attention to multicore architectures, first considering partitioned systems, for which we achieve results close to those obtained for single-core processors. Subsequently, we shy away from the over-provision of those systems and consider less restrictive uses of homogeneous multiprocessors, where the scheduling algorithm is key to high schedulable utilization. To that end we single out RUN, a promising baseline, and extend it to SPRINT, which supports sporadic task sets, hence matches real-world industrial needs better. To corroborate our results we present findings from real-world case studies from avionic industry.
Resumo:
In this paper, two studies are reported in which children’s ability to distinguish reality from fantasy was investigated. In Experiment 1, children of different ages made pairwise comparisons of 12 pictures of fictional figures and 3 photographs of real people by evaluating on a 6-point scale how easily these figures could meet each other. The results revealed that fantasy/reality distinction develops with age: 7–8-year-old showed a fundamental categorical distinction (comparable to that of adults) whereas 3–4-year-old treated the real world like one of many worlds. In Experiment 2, we took an individual differences approach and tested 116 4–5-year-old who performed the same fantasy task. In addition, they were presented with theory-of-mind tasks and tests measuring non-verbal intelligence and language skills. The results showed that, after statistically controlling for age, non-verbal intelligence, and language skills, theory-of-mind abilities still significantly contributed to the prediction of fantasy understanding.
Resumo:
Abstract The development of cognitive robots needs a strong “sensorial” support which should allow it to perceive the real world for interacting with it properly. Therefore the development of efficient visual-processing software to be equipped in effective artificial agents is a must. In this project we study and develop a visual-processing software that will work as the “eyes” of a cognitive robot. This software performs a three-dimensional mapping of the robot’s environment, providing it with the essential information required to make proper decisions during its navigation. Due to the complexity of this objective we have adopted the Scrum methodology in order to achieve an agile development process, which has allowed us to correct and improve in a fast way the successive versions of the product. The present project is structured in Sprints, which cover the different stages of the software development based on the requirements imposed by the robot and its real necessities. We have initially explored different commercial devices oriented to the acquisition of the required visual information, adopting the Kinect Sensor camera (Microsoft) as the most suitable option. Later on, we have studied the available software to manage the obtained visual information as well as its integration with the robot’s software, choosing the high-level platform Matlab as the common nexus to join the management of the camera, the management of the robot and the implementation of the behavioral algorithms. During the last stages the software has been developed to include the fundamental functionalities required to process the real environment, such as depth representation, segmentation, and clustering. Finally the software has been optimized to exhibit real-time processing and a suitable performance to fulfill the robot’s requirements during its operation in real situations.
Resumo:
Due to ever increasing transportation of people and goods, automatic traffic surveillance is becoming a key issue for both providing safety to road users and improving traffic control in an efficient way. In this paper, we propose a new system that, exploiting the capabilities that both computer vision and machine learning offer, is able to detect and track different types of real incidents on a highway. Specifically, it is able to accurately detect not only stopped vehicles, but also drivers and passengers leaving the stopped vehicle, and other pedestrians present in the roadway. Additionally, a theoretical approach for detecting vehicles which may leave the road in an unexpected way is also presented. The system works in real-time and it has been optimized for working outdoor, being thus appropriate for its deployment in a real-world environment like a highway. First experimental results on a dataset created with videos provided by two Spanish highway operators demonstrate the effectiveness of the proposed system and its robustness against noise and low-quality videos.
Resumo:
The Cherenkov Telescope Array (CTA) will be the next-generation ground-based observatory to study the universe in the very-high-energy domain. The observatory will rely on a Science Alert Generation (SAG) system to analyze the real-time data from the telescopes and generate science alerts. The SAG system will play a crucial role in the search and follow-up of transients from external alerts, enabling multi-wavelength and multi-messenger collaborations. It will maximize the potential for the detection of the rarest phenomena, such as gamma-ray bursts (GRBs), which are the science case for this study. This study presents an anomaly detection method based on deep learning for detecting gamma-ray burst events in real-time. The performance of the proposed method is evaluated and compared against the Li&Ma standard technique in two use cases of serendipitous discoveries and follow-up observations, using short exposure times. The method shows promising results in detecting GRBs and is flexible enough to allow real-time search for transient events on multiple time scales. The method does not assume background nor source models and doe not require a minimum number of photon counts to perform analysis, making it well-suited for real-time analysis. Future improvements involve further tests, relaxing some of the assumptions made in this study as well as post-trials correction of the detection significance. Moreover, the ability to detect other transient classes in different scenarios must be investigated for completeness. The system can be integrated within the SAG system of CTA and deployed on the onsite computing clusters. This would provide valuable insights into the method's performance in a real-world setting and be another valuable tool for discovering new transient events in real-time. Overall, this study makes a significant contribution to the field of astrophysics by demonstrating the effectiveness of deep learning-based anomaly detection techniques for real-time source detection in gamma-ray astronomy.
Resumo:
An important feature of some conceptual modelling grammars is the features they provide to allow database designers to show real-world things may or may not possess a particular attribute or relationship. In the entity-relationship model, for example, the fact that a thing may not possess an attribute can be represented by using a special symbol to indicate that the attribute is optional. Similarly, the fact that a thing may or may not be involved in a relationship can be represented by showing the minimum cardinality of the relationship as zero. Whether these practices should be followed, however, is a contentious issue. An alternative approach is to eliminate optional attributes and relationships from conceptual schema diagrams by using subtypes that have only mandatory attributes and relationships. In this paper, we first present a theory that led us to predict that optional attributes and relationships should be used in conceptual schema diagrams only when users of the diagrams require a surface-level understanding of the domain being represented by the diagrams. When users require a deep-level understanding, however, optional attributes and relationships should not be used because they undermine users' abilities to grasp important domain semantics. We describe three experiments which we then undertook to test our predictions. The results of the experiments support our predictions.
Resumo:
This paper presents a study carried out in order to evaluate the students' perception in the development and use of remote Control and Automation education kits developed by two Universities. Three projects, based on real world environments, were implemented, being local and remotely operated. Students implemented the kits using the theoretical and practical knowledge, being the teachers a catalyst in the learning process. When kits were operational, end-user students got acquainted to the kits in the course curricula units. It is the author's believe that successful results were achieved not only in the learning progress on the Automation and Control fields (hard skills) but also on the development of the students soft skills, leading to encouraging and rewarding goals, motivating their future decisions and promoting synergies in their work. The design of learning experimental kits by students, under teacher supervision, for future use in course curricula by enduser students is an advantageous and rewarding experience.
Resumo:
No passado, as acções publicitárias eram rotuladas como above the line e below the line, referindo-se à dicotomia de pontos de contacto com os públicos-alvo via Meios de Comunicação Social ou via Ponto de Venda. A esta dicotomia de meios e instrumentos, os anos 90 vieram trazer um terceiro ponto de contacto, crescentemente omnipresente e hegemónico, a world wide web ou rede, a que se acedia via computador. As acções de marketing e comunicação passaram então a rotular-se como online e offline, passando, não já a referir-se aos pontos de contacto, mas aos canais pelos quais circulavam as mensagens e acções das marcas. Desde o início deste século, o poder do digital veio crescendo, em software e hardware, em terminais e tecnologias, assistindo-se a uma transferência de esforços de comunicação, da esfera real para a esfera do digital. O deslumbramento pelo digital conquistou mesmo algumas marcas de dimensão mundial que hoje apostam integralmente o seu orçamento nesta forma de marketing, nas suas múltiplas facetas. Contudo, e porque se tem tornado óbvio que os públicos distribuem os seus favores por múltiplos touch points, para maximizar o impacto, assiste-se agora a um fenómeno único, potenciado por novas tecnologias que surgem todos os dias: em estratégias que se podem denominar de all-line, verifica-se a fusão entre dois mundos, mundo real e mundo digital, em múltiplas actividades de marketing que fazem convergir estas duas realidades em plataformas que vão do computador ao tablet, do smartphone à vending machine interactiva, do facebook ao Google maps, da imprensa tradicional ao pinterest. É esta convergência mundo real - mundo digital que abre agora novas oportunidades à comunicação publicitária, potenciando os ingredientes das marcas de sucesso no futuro: sensações (estímulo dos sentidos), intimidade e mistério, num cocktail suportado por uma nova criatividade.