979 resultados para Real-time location system
Resumo:
Recent advances in technology have produced a significant increase in the availability of free sensor data over the Internet. With affordable weather monitoring stations now available to individual meteorology enthusiasts a reservoir of real time data such as temperature, rainfall and wind speed can now be obtained for most of the United States and Europe. Despite the abundance of available data, obtaining useable information about the weather in your local neighbourhood requires complex processing that poses several challenges. This paper discusses a collection of technologies and applications that harvest, refine and process this data, culminating in information that has been tailored toward the user. In this case we are particularly interested in allowing a user to make direct queries about the weather at any location, even when this is not directly instrumented, using interpolation methods. We also consider how the uncertainty that the interpolation introduces can then be communicated to the user of the system, using UncertML, a developing standard for uncertainty representation.
Resumo:
This paper describes the basic tools for a real-time decision support system of a semiotic type on the example of the prototype for management and monitoring of a nuclear power block implemented on the basis of the tool complex G2+GDA using cognitive graphics and parallel processing. This work was supported by RFBR (project 02-07-90042).
Resumo:
This paper studies the key aspects of an optical link which transmits a broadband microwave filter bank multicarrier (FBMC) signal. The study is presented in the context of creating an all-analogue real-time multigigabit orthogonal frequency division multiplexing electro-optical transceiver for short range and high-capacity data center networks. Passive microwave filters are used to perform the pulse shaping of the bit streams, allowing an orthogonal transmission without the necessity of digital signal processing (DSP). Accordingly, a cyclic prefix that would cause a reduction in the net data rate is not required. An experiment consisting of three orthogonally spaced 2.7 Gbaud quadrature phase shift keyed subchannels demonstrates that the spectral efficiency of traditional DSP-less subcarrier multiplexed links can be potentially doubled. A sensitivity of -29.5 dBm is achieved in a 1-km link.
Resumo:
Communication has become an essential function in our civilization. With the increasing demand for communication channels, it is now necessary to find ways to optimize the use of their bandwidth. One way to achieve this is by transforming the information before it is transmitted. This transformation can be performed by several techniques. One of the newest of these techniques is the use of wavelets. Wavelet transformation refers to the act of breaking down a signal into components called details and trends by using small waveforms that have a zero average in the time domain. After this transformation the data can be compressed by discarding the details, transmitting the trends. In the receiving end, the trends are used to reconstruct the image. In this work, the wavelet used for the transformation of an image will be selected from a library of available bases. The accuracy of the reconstruction, after the details are discarded, is dependent on the wavelets chosen from the wavelet basis library. The system developed in this thesis takes a 2-D image and decomposes it using a wavelet bank. A digital signal processor is used to achieve near real-time performance in this transformation task. A contribution of this thesis project is the development of DSP-based test bed for the future development of new real-time wavelet transformation algorithms.
Resumo:
Postprint
Resumo:
Postprint
Resumo:
FPGAs and GPUs are often used when real-time performance in video processing is required. An accelerated processor is chosen based on task-specific priorities (power consumption, processing time and detection accuracy), and this decision is normally made once at design time. All three characteristics are important, particularly in battery-powered systems. Here we propose a method for moving selection of processing platform from a single design-time choice to a continuous run time one.We implement Histogram of Oriented Gradients (HOG) detectors for cars and people and Mixture of Gaussians (MoG) motion detectors running across FPGA, GPU and CPU in a heterogeneous system. We use this to detect illegally parked vehicles in urban scenes. Power, time and accuracy information for each detector is characterised. An anomaly measure is assigned to each detected object based on its trajectory and location, when compared to learned contextual movement patterns. This drives processor and implementation selection, so that scenes with high behavioural anomalies are processed with faster but more power hungry implementations, but routine or static time periods are processed with power-optimised, less accurate, slower versions. Real-time performance is evaluated on video datasets including i-LIDS. Compared to power-optimised static selection, automatic dynamic implementation mapping is 10% more accurate but draws 12W extra power in our testbed desktop system.
Resumo:
[EN]Active Vision Systems can be considered as dynamical systems which close the loop around artificial visual perception, controlling camera parameters, motion and also controlling processing to simplify, accelerate and do more robust visual perception. Research and Development in Active Vision Systems [Aloi87], [Bajc88] is a main area of interest in Computer Vision, mainly by its potential application in different scenarios where real-time performance is needed such as robot navigation, surveillance, visual inspection, among many others. Several systems have been developed during last years using robotic-heads for this purpose...
Resumo:
This analysis estimates several economic benefits derived from national implementation of the National Oceanic and Atmospheric Administration’s Physical Oceanographic Real-Time System (PORTS®) at the 175 largest ports in the United States. Significant benefits were observed owing to: (1) lower commercial marine accident rates and resultant reductions in morbidity, mortality and property damage; (2) reduced pollution remediation costs; and, (3) increased productivity associated with operation of more fully loaded commercial vessels. Evidence also suggested additional benefits from heightened commercial and recreational fish catch and diminished recreational boating accidents. Annual gross benefits from 58 current PORTS® locations exceeded $217 million with an addition $83 million possible if installed at the largest remaining 117 ports in the United States. Over the ten-year economic life of PORTS® instruments, the present value for installation at all 175 ports could approach $2.5 billion.
Resumo:
Image processing offers unparalleled potential for traffic monitoring and control. For many years engineers have attempted to perfect the art of automatic data abstraction from sequences of video images. This paper outlines a research project undertaken at Napier University by the authors in the field of image processing for automatic traffic analysis. A software based system implementing TRIP algorithms to count cars and measure vehicle speed has been developed by members of the Transport Engineering Research Unit (TERU) at the University. The TRIP algorithm has been ported and evaluated on an IBM PC platform with a view to hardware implementation of the pre-processing routines required for vehicle detection. Results show that a software based traffic counting system is realisable for single window processing. Due to the high volume of data required to be processed for full frames or multiple lanes, system operations in real time are limited. Therefore specific hardware is required to be designed. The paper outlines a hardware design for implementation of inter-frame and background differencing, background updating and shadow removal techniques. Preliminary results showing the processing time and counting accuracy for the routines implemented in software are presented and a real time hardware pre-processing architecture is described.
Resumo:
For various reasons, many Algol 68 compilers do not directly implement the parallel processing operations defined in the Revised Algol 68 Report. It is still possible however, to perform parallel processing, multitasking and simulation provided that the implementation permits the creation of a master routine for the coordination and initiation of processes under its control. The package described here is intended for real time applications and runs in conjunction with the Algol 68R system; it extends and develops the original Algol 68RT package, which was designed for use with multiplexers at the Royal Radar Establishment, Malvern. The facilities provided, in addition to the synchronising operations, include an interface to an ICL Communications Processor enabling the abstract processes to be realised as the interaction of several teletypes or visual display units with a real time program providing a useful service.
Resumo:
This thesis studies the state-of-the-art of phasor measurement units (PMUs) as well as their metrological requirements stated in the IEEE C37.118.1 and C37.118.2 Standards for guaranteeing correct measurement performances. Communication systems among PMUs and their possible applicability in the field of power quality (PQ) assessment are also investigated. This preliminary study is followed by an analysis of the working principle of real-time (RT) simulators and the importance of hardware-in-the-loop (HIL) implementation, examining the possible case studies specific for PMUs, including compliance tests which are one of the most important parts. The core of the thesis is focused on the implementation of a PMU model in the IEEE 5-bus network in Simulink and in the validation of the results using OPAL RT-4510 as a real-time simulator. An initial check allows one to get an idea about the goodness of the results in Simulink, comparing the PMU data with respect to the load-flow steady-state information. In this part, accuracy indices are also calculated for both voltage and current synchrophasors. The following part consists in the implementation of the same code in OPAL-RT 4510 simulator, after which an initial analysis is carried out in a qualitative way in order to get a sense of the goodness of the outcomes. Finally, the confirmation of the results is based on an examination of the attained voltage and current synchrophasors and accuracy indices coming from Simulink models and from OPAL system, using a Matlab script. This work also proposes suggestions for an upcoming operation of PMUs in a more complex system as the Digital Twin (DT) in order to improve the performances of the already-existing protection devices of the distribution system operator (DSO) for a future enhancement of power systems reliability.
Resumo:
Aims: To investigate the expression of sboA and ituD genes among strains of Bacillus spp. at different pH and temperature. Methods and Results: Different Bacillus strains from the Amazon basin and Bacillus subtilis ATCC 19659 were investigated for the production of subtilosin A and iturin A by qRT-PCR, analysing sboA and ituD gene expression under different culture conditions. Amazonian strains presented a general gene expression level lower than B. subtilis ATCC 19659 for sboA. In contrast, when analysing the expression of ituD gene, the strains from the Amazon, particularly P40 and P45B, exhibited higher levels of expression. Changes in pH (6 and 8) and temperature (37 and 42 degrees C) caused a decrease in sboA expression, but increased ituD expression among strains from Amazonian environment. Conclusions: Temperature and pH have an important influence on the expression of genes sboA (subtilosin A) and ituD (iturin A) among Bacillus spp. The strains P40 and P45B can be useful for the production of antimicrobial peptide iturin A. Significance and Impact of the Study: Monitoring the expression of essential biosynthetic genes by qRT-PCR is a valuable tool for optimization of the production of antimicrobial peptides.
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.