958 resultados para Reactive power
Resumo:
Smart microgrids offer a new challenging domain for power theories and metering techniques because they include a variety of intermittent power sources which positively impact on power flow and distribution losses but may cause voltage asymmetry and frequency variation. In smart microgrids, the voltage distortion and asymmetry in presence of poly-phase nonlinear loads can be also greater than in usual distribution lines fed by the utility, thus affecting measurement accuracy and possibly causing tripping of protections. In such a context, a reconsideration of power theories is required since they form the basis for supply and load characterization. A revision of revenue metering techniques is also suggested to ensure a correct penalization of the loads for their responsibility in generating reactive power, voltage asymmetry, and distortion. This paper shows that the conservative power theory provides a suitable background to cope with smart grids characterization and metering needs. Simulation and experimental results show the properties of the proposed approach.
Resumo:
The Predispatch model (PD) calculates a short-term generation policy for power systems. In this work a PD model is proposed that improves two modeling aspects generally neglected in the literature: voltage/reactive power constraints and ramp rate constraints for generating units. Reactive power constraints turn the PD into a non-linear problem and the ramp rate constraints couple the problem dynamically in time domain. The solution of the PD is turned into a harder task when such constraints are introduced. The dual decomposition/ lagrangian relaxation technique is used in the solution approach for handing dynamic constraints. As a result the PD is decomposed into a series of independent Optimal Power Flow (FPO) sub problems, in which the reactive power is represented in detail. The solution of the independent FPO is coordinated by means of Lagrange multipliers, so that dynamic constraints are iteratively satisfied. Comparisons between dispatch policies calculated with and without the representation of ramp rate constraints are performed, using the IEEE 30 bus test system. The results point-out the importance of representing such constraints in the generation dispatch policy. © 2004 IEEE.
Resumo:
Considering different single and multiphase circuits feeding linear and non-linear loads, this paper presents theoretical discussions and experimental evaluation of the recent Conservative Power Theory (CPT), by means of Virtual Instrumentation concepts. The main goal is to analyze the results of such power theory definitions under nonsinusoidal and unbalanced conditions, pointing out its major advantages, possible drawbacks or relevant aspects for discussion. © 2009 IEEE.
Resumo:
In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.
Resumo:
Distributed Generators (DG) are generally modeled as PQ or PV buses in power flow studies. But in order to integrate DG units into the distribution systems and control the reactive power injection it is necessary to know the operation mode and the type of connection to the system. This paper presents a single-phase and a three-phase mathematical model to integrate DG in power flow calculations in distribution systems, especially suited for Smart Grid calculations. If the DG is in PV mode, each step of the power flow algorithm calculates the reactive power injection from the DG to the system to keep the voltage in the bus in a predefined level, if the DG is in PQ mode, the power injection is considered as a negative load. The method is tested on two well known test system, presenting single-phase results on 85 bus system, and three-phase results in the IEEE 34 bus test system. © 2011 IEEE.
Resumo:
The high active and reactive power level demanded by the distribution systems, the growth of consuming centers, and the long lines of the distribution systems result in voltage variations in the busses compromising the quality of energy supplied. To ensure the energy quality supplied in the distribution system short-term planning, some devices and actions are used to implement an effective control of voltage, reactive power, and power factor of the network. Among these devices and actions are the voltage regulators (VRs) and capacitor banks (CBs), as well as exchanging the conductors sizes of distribution lines. This paper presents a methodology based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II) for optimized allocation of VRs, CBs, and exchange of conductors in radial distribution systems. The Multiobjective Genetic Algorithm (MGA) is aided by an inference process developed using fuzzy logic, which applies specialized knowledge to achieve the reduction of the search space for the allocation of CBs and VRs.
Resumo:
This paper presents some methodologies for reactive energy measurement, considering three modern power theories that are suitable for three-phase four-wire non-sinusoidal and unbalanced circuits. The theories were applied in some profiles collected in electrical distribution systems which have real characteristics for voltages and currents measured by commercial reactive energy meters. The experimental results are presented in order to analyze the accuracy of the methodologies, considering the standard IEEE 1459-2010 as a reference. Finally, for additional comparisons, the theories will be confronted with the modern Yokogawa WT3000 energy meter and three samples of a commercial energy meter through an experimental setup. © 2011 IEEE.
Resumo:
This paper proposes a new methodology to control the power flow between a distributed generator (DG) and the electrical power distribution grid. It is used the droop voltage control to manage the active and reactive power. Through this control a sinusoidal voltage reference is generated to be tracked by voltage loop and this loop generates the current reference for the current loop. The proposed control introduces feed-forward states improving the control performance in order to obtain high quality for the current injected to the grid. The controllers were obtained through the linear matrix inequalities (LMI) using the D-stability analysis to allocate the closed-loop controller poles. Therefore, the results show quick transient response with low oscillations. Thus, this paper presents the proposed control technique, the main simulation results and a prototype with 1000VA was developed in the laboratory in order to demonstrate the feasibility of the proposed control. © 2012 IEEE.
Resumo:
The theory presented in this paper was primarily developed to give a physical interpretation for the instantaneous power flow on a three-phase induction machine, without a neutral conductor, on any operational state and may be extended to any three-phase load. It is a vectorial interpretation of the instantaneous reactive power theory presented by Akagi et al. Which, believe the authors, isn't enough developed and its physical meaning not yet completely understood. This vectorial interpretation is based on the instantaneous complex power concept defined by Torrens for single-phase, ac, steady-state circuits, and leads to a better understanding of the power phenomenon, particularly of the distortion power. This concept has been extended by the authors to three-phase systems, through the utilization of the instantaneous space vectors. The results of measurements of instantaneous complex power on a self-excited induction generator's terminals, during an over-load application transient, are presented for illustration. The compensation of reactive power proposed by Akagi is discussed and a new horizon for the theory application is opened.
Resumo:
The present dissertation aims to explore, theoretically and experimentally, the problems and the potential advantages of different types of power converters for “Smart Grid” applications, with particular emphasis on multi-level architectures, which are attracting a rising interest even for industrial requests. The models of the main multilevel architectures (Diode-Clamped and Cascaded) are shown. The best suited modulation strategies to function as a network interface are identified. In particular, the close correlation between PWM (Pulse Width Modulation) approach and SVM (Space Vector Modulation) approach is highlighted. An innovative multilevel topology called MMC (Modular Multilevel Converter) is investigated, and the single-phase, three-phase and "back to back" configurations are analyzed. Specific control techniques that can manage, in an appropriate way, the charge level of the numerous capacitors and handle the power flow in a flexible way are defined and experimentally validated. Another converter that is attracting interest in “Power Conditioning Systems” field is the “Matrix Converter”. Even in this architecture, the output voltage is multilevel. It offers an high quality input current, a bidirectional power flow and has the possibility to control the input power factor (i.e. possibility to participate to active and reactive power regulations). The implemented control system, that allows fast data acquisition for diagnostic purposes, is described and experimentally verified.
Resumo:
This paper proposes a transmission and wheeling pricing method based on the monetary flow tracing along power flow paths: the monetary flow-monetary path method. Active and reactive power flows are converted into monetary flows by using nodal prices. The method introduces a uniform measurement for transmission service usages by active and reactive powers. Because monetary flows are related to the nodal prices, the impacts of generators and loads on operation constraints and the interactive impacts between active and reactive powers can be considered. Total transmission service cost is separated into more practical line-related costs and system-wide cost, and can be flexibly distributed between generators and loads. The method is able to reconcile transmission service cost fairly and to optimize transmission system operation and development. The case study on the IEEE 30 bus test system shows that the proposed pricing method is effective in creating economic signals towards the efficient use and operation of the transmission system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Cascaded multilevel inverters-based Static Var Generators (SVGs) are FACTS equipment introduced for active and reactive power flow control. They eliminate the need for zigzag transformers and give a fast response. However, with regard to their application for flicker reduction in using Electric Arc Furnace (EAF), the existing multilevel inverter-based SVGs suffer from the following disadvantages. (1) To control the reactive power, an off-line calculation of Modulation Index (MI) is required to adjust the SVG output voltage. This slows down the transient response to the changes of reactive power; and (2) Random active power exchange may cause unbalance to the voltage of the d.c. link (HBI) capacitor when the reactive power control is done by adjusting the power angle d alone. To resolve these problems, a mathematical model of 11-level cascaded SVG, was developed. A new control strategy involving both MI (modulation index) and power angle (d) is proposed. A selected harmonics elimination method (SHEM) is taken for switching pattern calculations. To shorten the response time and simplify the controls system, feed forward neural networks are used for on-line computation of the switching patterns instead of using look-up tables. The proposed controller updates the MI and switching patterns once each line-cycle according to the sampled reactive power Qs. Meanwhile, the remainder reactive power (compensated by the MI) and the reactive power variations during the line-cycle will be continuously compensated by adjusting the power angles, d. The scheme senses both variables MI and d, and takes action through the inverter switching angle, qi. As a result, the proposed SVG is expected to give a faster and more accurate response than present designs allow. In support of the proposal there is a mathematical model for reactive powered distribution and a sensitivity matrix for voltage regulation assessment, MATLAB simulation results are provided to validate the proposed schemes. The performance with non-linear time varying loads is analysed and refers to a general review of flicker, of methods for measuring flickers due to arc furnace and means for mitigation.
Resumo:
The advent of the harmonic neutralised shunt Converter Compensator as a practical means of reactive power compensation in power transmission systems has cleared ground for wider application of this type of equipment. An experimental 24-pulse voltage sourced convector has been successfully applied in controlling the terminal power factor of a 1.5kW, 240V three phase cage rotor induction motor, whose winding has been used in place of the usual phase shifting transformers. To achieve this, modifications have been made to the conventional stator winding of the induction machine. These include an unconventional phase spread and facilitation of compensator connections to selected tapping points between stator coils to give a three phase winding with a twelve phase connection to the twenty four pulse converter. Theoretical and experimental assessments of the impact of these modifications and attachment of the compensator have shown that there is a slight reduction in the torque developed at a given slip and in the combined system efficiency. There is also an increase in the noise level, also a consequence of the harmonics. The stator leakage inductance gave inadequate coupling reactance between the converter and the effective voltage source, necessitating the use of external inductors in each of the twelve phases. The terminal power factor is fully controllable when the induction machine is used either as a motor or as a generator.
Resumo:
The scope of this paper is to present the Pulse Width Modulation (PWM) based method for Active Power (AP) and Reactive Power (RP) measurements as can be applied in Power Meters. Necessarily, the main aim of the material presented is a twofold, first to present a realization methodology of the proposed algorithm, and second to verify the algorithm’s robustness and validity. The method takes advantage of the fact that frequencies present in a power line are of a specific fundamental frequency range (a range centred on the 50 Hz or 60 Hz) and that in case of the presence of harmonics the frequencies of those dominating in the power line spectrum can be specified on the basis of the fundamental. In contrast to a number of existing methods a time delay or shifting of the input signal is not required by the method presented and the time delay by n/2 of the Current signal with respect to the Voltage signal required by many of the existing measurement techniques, does not apply in the case of the PWM method as well.
Resumo:
In this paper, a new open-winding control strategy is proposed for a brushless doubly-fed reluctance generator (BDFRG) applicable for wind turbines. The BDFRG control winding is fed via a dual two-level three-phase converter using a single dc bus. Direct power control based on maximum power point tracking with common mode voltage elimination is designed, which not only the active and reactive power is decoupled, but the reliability and redundancy are all improved greatly by increasing the switching modes of operation, while DC-link voltage and rating of power devices decreased by 50% comparing to the traditional three-level converter systems. Consequently its effectiveness is evaluated by simulation tests based on a 42-kW prototype generator.