952 resultados para Rayleigh-Ritz theorem
Resumo:
A definition is given for the characteristic equation of anN-partitioned matrix. It is then proved that this matrix satisfies its own characteristic equation. This can then be regarded as a version of the Cayley-Hamilton theorem, of use withN-dimensional systems.
Resumo:
In this article Geoff Tennant summarises the first half of Imre Lakatos's seminal 1976 book, "Proofs and refutations: the logic of mathematical discovery". Implications are drawn for the classroom treatment of proof.
Resumo:
A thermodynamic expression for the analog of the canonical ensemble for nonequilibrium systems is described based on a purely information theoretical interpretation of entropy. It is shown that this nonequilibrium canonical distribution implies some important results from nonequilibrium thermodynamics, specifically, the fluctuation theorem and the Jarzynski equality. Those results are therefore expected to be more widely applicable, for example, to macroscopic systems.
Resumo:
We investigate the behavior of a two-dimensional inviscid and incompressible flow when pushed out of dynamical equilibrium. We use the two-dimensional vorticity equation with spectral truncation on a rectangular domain. For a sufficiently large number of degrees of freedom, the equilibrium statistics of the flow can be described through a canonical ensemble with two conserved quantities, energy and enstrophy. To perturb the system out of equilibrium, we change the shape of the domain according to a protocol, which changes the kinetic energy but leaves the enstrophy constant. We interpret this as doing work to the system. Evolving along a forward and its corresponding backward process, we find numerical evidence that the distributions of the work performed satisfy the Crooks relation. We confirm our results by proving the Crooks relation for this system rigorously.
Resumo:
Arnol'd's second hydrodynamical stability theorem, proven originally for the two-dimensional Euler equations, can establish nonlinear stability of steady flows that are maxima of a suitably chosen energy-Casimir invariant. The usual derivations of this theorem require an assumption of zero disturbance circulation. In the present work an analogue of Arnol'd's second theorem is developed in the more general case of two-dimensional quasi-geostrophic flow, with the important feature that the disturbances are allowed to have non-zero circulation. New nonlinear stability criteria are derived, and explicit bounds are obtained on both the disturbance energy and potential enstrophy which are expressed in terms of the initial disturbance fields. While Arnol'd's stability method relies on the second variation of the energy-Casimir invariant being sign-definite, the new criteria can be applied to cases where the second variation is sign-indefinite because of the disturbance circulations. A version of Andrews' theorem is also established for this problem.
Resumo:
Theorem-proving is a one-player game. The history of computer programs being the players goes back to 1956 and the ‘LT’ LOGIC THEORY MACHINE of Newell, Shaw and Simon. In game-playing terms, the ‘initial position’ is the core set of axioms chosen for the particular logic and the ‘moves’ are the rules of inference. Now, the Univalent Foundations Program at IAS Princeton and the resulting ‘HoTT’ book on Homotopy Type Theory have demonstrated the success of a new kind of experimental mathematics using computer theorem proving.
The correct application of Poynting's theorem to the time-dependent magnetosphere: reply to Heikkila
Resumo:
We show how two linearly independent vectors can be used to construct two orthogonal vectors of equal magnitude in a simple way. The proof that the constructed vectors are orthogonal and of equal magnitude is a good exercise for students studying properties of scalar and vector triple products. We then show how this result can be used to prove van Aubel's theorem that relates the two line segments joining the centres of squares on opposite sides of a plane quadrilateral.
Resumo:
Dual-polarisation radar measurements provide valuable information about the shapes and orientations of atmospheric ice particles. For quantitative interpretation of these data in the Rayleigh regime, common practice is to approximate the true ice crystal shape with that of a spheroid. Calculations using the discrete dipole approximation for a wide range of crystal aspect ratios demonstrate that approximating hexagonal plates as spheroids leads to significant errors in the predicted differential reflectivity, by as much as 1.5 dB. An empirical modification of the shape factors in Gans's spheroid theory was made using the numerical data. The resulting simple expressions, like Gans's theory, can be applied to crystals in any desired orientation, illuminated by an arbitrarily polarised wave, but are much more accurate for hexagonal particles. Calculations of the scattering from more complex branched and dendritic crystals indicate that these may be accurately modelled using the new expression, but with a reduced permittivity dependent on the volume of ice relative to an enclosing hexagonal prism.