972 resultados para Rarefied gas dynamics
Resumo:
We have developed an alternate description of dynamics of nucleation in terms of an extended set of order parameters. The order parameters consist of an ordered set of kth largest clusters, ordered such that k = 1 is the largest cluster in the system, k = 2 is the second largest cluster, and so on. We have derived an analytic expression for the free energy for the kth largest cluster, which is in excellent agreement with the simulated results. At large supersaturation, the free energy barrier for the growth of the kth largest cluster disappears and the nucleation becomes barrierless. The major success of this extended theoretical formalism is that it can clearly explain the observed change in mechanism at large metastability P. Bhimalapuram et al., Phys. Rev. Lett. 98, 206104 (2007)] and the associated dynamical crossover. The classical nucleation theory cannot explain this crossover. The crossover from activated to barrierless nucleation is found to occur at a supersaturation where multiple clusters cross the critical size. We attribute the crossover as the onset of the kinetic spinodal. We have derived an expression for the rate of nucleation in the barrierless regime by modeling growth as diffusion on the free energy surface of the largest cluster. The model reproduces the slower increase in the rate of growth as a function of supersaturation, as observed in experiments.
Resumo:
The fluctuating force model is developed and applied to the turbulent flow of a gas-particle suspension in a channel in the limit of high Stokes number, where the particle relaxation time is large compared to the fluid correlation time, and low particle Reynolds number where the Stokes drag law can be used to describe the interaction between the particles and fluid. In contrast to the Couette flow, the fluid velocity variances in the different directions in the channel are highly non-homogeneous, and they exhibit significant variation across the channel. First, we analyse the fluctuating particle velocity and acceleration distributions at different locations across the channel. The distributions are found to be non-Gaussian near the centre of the channel, and they exhibit significant skewness and flatness. However, acceleration distributions are closer to Gaussian at locations away from the channel centre, especially in regions where the variances of the fluid velocity fluctuations are at a maximum. The time correlations for the fluid velocity fluctuations and particle acceleration fluctuations are evaluated, and it is found that the time correlation of the particle acceleration fluctuations is close to the time correlations of the fluid velocity in a `moving Eulerian' reference, moving with the mean fluid velocity. The variances of the fluctuating force distributions in the Langevin simulations are determined from the time correlations of the fluid velocity fluctuations and the results are compared with direct numerical simulations. Quantitative agreement between the two simulations are obtained provided the particle viscous relaxation time is at least five times larger than the fluid integral time.
Resumo:
The particle and fluid velocity fluctuations in a turbulent gas-particle suspension are studied experimentally using two-dimensional particle image velocimetry with the objective of comparing the experiments with the predictions of fluctuating force simulations. Since the fluctuating force simulations employ force distributions which do not incorporate the modification of fluid turbulence due to the particles, it is of importance to quantify the turbulence modification in the experiments. For experiments carried out at a low volume fraction of 9.15 x 10(-5) (mass loading is 0.19), where the viscous relaxation time is small compared with the time between collisions, it is found that the gas-phase turbulence is not significantly modified by the presence of particles. Owing to this, quantitative agreement is obtained between the results of experiments and fluctuating force simulations for the mean velocity and the root mean square of the fluctuating velocity, provided that the polydispersity in the particle size is incorporated in the simulations. This is because the polydispersity results in a variation in the terminal velocity of the particles which could induce collisions and generate fluctuations; this mechanism is absent if all of the particles are of equal size. It is found that there is some variation in the particle mean velocity very close to the wall depending on the wall-collision model used in the simulations, and agreement with experiments is obtained only when the tangential wall-particle coefficient of restitution is 0.7. The mean particle velocity is in quantitative agreement for locations more than 10 wall units from the wall of the channel. However, there are systematic differences between the simulations and theory for the particle concentrations, possibly due to inadequate control over the particle feeding at the entrance. The particle velocity distributions are compared both at the centre of the channel and near the wall, and the shape of the distribution function near the wall obtained in experiments is accurately predicted by the simulations. At the centre, there is some discrepancy between simulations and experiment for the distribution of the fluctuating velocity in the flow direction, where the simulations predict a bi-modal distribution whereas only a single maximum is observed in the experiments, although both distributions are skewed towards negative fluctuating velocities. At a much higher particle mass loading of 1.7, where the time between collisions is smaller than the viscous relaxation time, there is a significant increase in the turbulent velocity fluctuations by similar to 1-2 orders of magnitude. Therefore, it becomes necessary to incorporate the modified fluid-phase intensity in the fluctuating force simulation; with this modification, the mean and mean-square fluctuating velocities are within 20-30% of the experimental values.
Resumo:
The results presented are obtained from sound velocity measurements, uniaxial compression tests, Brazilian tests and three-point bending tests. The density of microcracks in the heated rock is studied by means of optical microscopy, SEM and differential strain analysis (DSA).
Resumo:
In this paper the global flame dynamics of a model annular gas turbine combustor undergoing strong self-excited circumferential instabilities is presented. The combustor consisted of either 12, 15 or 18 turbulent premixed bluff-body flames arranged around an annulus of fixed circumference so that the effect of flame separation distance, S, on the global heat release dynamics could be investigated. Reducing S was found to produce both an increase in the resonant frequency and the limit-cycle amplitudes of pressure and heat release for the same equivalence ratio. The phase-averaged global heat release, obtained from high-speed OH- chemiluminescence imaging from above, showed that these changes are caused by large-scale modifications to the flame structure around the annulus. For the largest S studied (12 flame configuration) the azimuthal instability produced a helical-like global heat release structure for each flame. When S was decreased, large-scale merging or linking between adjacent flames occurred spanning approximately half of the annulus with the peak heat release concentrated at the outer annular wall. The circumferential nature of the instability was evident from both the pressure measurements and the phase-averaged OH- chemiluminescence showing the phase of the heat release on either side of the annulus to be ≈180°apart and spinning in the counter clockwise direction. Both spinning and standing modes were found but only spinning modes are considered in this paper. To the best of the authors knowledge, these are the first experiments to provide a phase-averaged picture of self-excited azimuthal instabilities in a laboratory-scale annular combustor relevant to gas turbines. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
The gas-blast and centrifugal-accelerator testers are the two most commonly used erosion testers. An experimental and analytical study was made of the effect of particle characteristics (size, shape and concentration) on particle dynamics in each of these testers. Analysis showed that in the gas-blast tester both particle velocity and the dispersion angle of the particle jet were relatively sensitive to the particle characteristics. Particle characteristics, within the ranges studied, had little influence in the centrifugal accelerator tester. Consequently, during an erosion test, the range of particle velocities and dispersion angles in the gas-blast tester ismuch wider than in the centrifugal-accelerator tester. It was concluded that the centrifugal-accelerator tester gave closer control of the important erosion test parameters and therefore more consistent erosion test measurements. However, one drawback of the centrifugal-accelerator tester is the need to account for erosion effects associated with the impact of rotating particles, an inherent feature of this tester.
Resumo:
A gas turbine is made up of three basic components: a compressor, a combustion chamber and a turbine. Air is drawn into the engine by the compressor, which compresses it and delivers it to the combustion chamber. There, the air is mixed with the fuel and the mixture ignited, producing a rise of temperature and therefore an expansion of the gases. These are expelled through the engine nozzle, but first pass through the turbine, designed to extract energy to keep the compressor rotating [1]. The work described here uses data recorded from a Rolls Royce Spey MK 202 turbine, whose simplified diagram can be seen in Fig. 1. Both the compressor and the turbine are split into low pressure (LP) and high pressure (HP) stages. The HP turbine drives the HP compressor and the LP turbine drives the LP compressor. They are connected by concentric shafts that rotate at different speeds, denoted as NH and NL.
Resumo:
Molec ul ar dynamics calculations of the mean sq ua re displacement have been carried out for the alkali metals Na, K and Cs and for an fcc nearest neighbour Lennard-Jones model applicable to rare gas solids. The computations for the alkalis were done for several temperatures for temperature vol ume a swell as for the the ze r 0 pressure ze ro zero pressure volume corresponding to each temperature. In the fcc case, results were obtained for a wide range of both the temperature and density. Lattice dynamics calculations of the harmonic and the lowe s t order anharmonic (cubic and quartic) contributions to the mean square displacement were performed for the same potential models as in the molecular dynamics calculations. The Brillouin zone sums arising in the harmonic and the quartic terms were computed for very large numbers of points in q-space, and were extrapolated to obtain results ful converged with respect to the number of points in the Brillouin zone.An excellent agreement between the lattice dynamics results was observed molecular dynamics and in the case of all the alkali metals, e~ept for the zero pressure case of CSt where the difference is about 15 % near the melting temperature. It was concluded that for the alkalis, the lowest order perturbation theory works well even at temperat ures close to the melting temperat ure. For the fcc nearest neighbour model it was found that the number of particles (256) used for the molecular dynamics calculations, produces a result which is somewhere between 10 and 20 % smaller than the value converged with respect to the number of particles. However, the general temperature dependence of the mean square displacement is the same in molecular dynamics and lattice dynamics for all temperatures at the highest densities examined, while at higher volumes and high temperatures the results diverge. This indicates the importance of the higher order (eg. ~* ) perturbation theory contributions in these cases.
Resumo:
A study has been carried out to understand the influence of ambient gases on the dynamics of laser-blow-off plumes of multi-layered LiF–C thin film. Plume images at various time intervals ranging from 100 to 3000 ns have been recorded using an intensified CCD camera. Enhancement in the plume intensity and change in size and shape occurs on introducing ambient gases and these changes are highly dependent on the nature and composition of the ambient gas used. Velocity of the plume was found to be higher in helium ambient whereas intensity enhancement is greater in argon environment. The plume shapes have maximum size at 10−2 and 10−1 Torr of Ar and He pressures, respectively. As the background pressure increases further (>10−2 Torr: depending on the nature of gas), the plume gets compressed/focused in the lateral direction. Internal structure formation and turbulences are observed at higher pressures (>10−1 Torr) in both ambient gases.
Resumo:
We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Aims. We study trajectories of planetesimals whose orbits decay due to gas drag in a primordial solar nebula and are perturbed by the gravity of the secondary body on an eccentric orbit whose mass ratio takes values from mu(2) = 10(-7) to mu(2) = 10(-3) increasing ten times at each step. Each planetesimal ultimately suffers one of the three possible fates: (1) trapping in a mean motion resonance with the secondary body; (2) collision with the secondary body and consequent increase of its mass; or (3) diffusion after crossing the orbit of the secondary body.Methods. We take the Burlirsh-Stoer numerical algorithm in order to integrate the Newtonian equations of the planar, elliptical restricted three-body problem with the secondary body and the planetesimal orbiting the primary. It is assumed that there is no interaction among planetesimals, and also that the gas does not affect the orbit of the secondary body.Results. The results show that the optimal value of the gas drag constant k for the 1: 1 resonance is between 0.9 and 1.25, representing a meter size planetesimal for each AU of orbital radius. In this study, the conditions of the gas drag are such that in theory, L4 no longer exists in the circular case for a critical value of k that defines a limit size of the planetesimal, but for a secondary body with an eccentricity larger than 0.05 when mu(2) = 10(-6), it reappears. The decrease of the cutoff collision radius increase the difusions but does not affect the distribution of trapping. The contribution to the mass accretion of the secondary body is over 40% with a collision radius 0.05R(Hill) and less than 15% with 0.005R(Hill) for mu(2) = 10(-7). The trappings no longer occur when the drag constant k reachs 30. That means that the size limit of planetesimal trapping is 0.2 m per AU of orbital radius. In most cases, this accretion occurs for a weak gas drag and small secondary eccentricity. The diffusions represent most of the simulations showing that gas drag is an efficient process in scattering planetesimals and that the trapping of planetesimals in the 1: 1 resonance is a less probable fate. These results depend on the specific drag force chosen.
Resumo:
Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH- + CH3ONO2 reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (S(N)2@C) or the nitrogen center (S(N)2@N) as well as a proton abstraction followed by dissociation (E(CO)2) pathway. Direct dynamics simulations yield an S(N)2:E(CO)2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO2 group that scatters the incoming OH-. In addition to these dynamical effects, the nonstatistical behavior of these reactions is attributed to the absence of equilibrated reactant complexes and to the large number of recrossings, which might be present in several ion-molecule gas-phase reactions.