942 resultados para Random matrix
Resumo:
We consider the problem of interaction neighborhood estimation from the partial observation of a finite number of realizations of a random field. We introduce a model selection rule to choose estimators of conditional probabilities among natural candidates. Our main result is an oracle inequality satisfied by the resulting estimator. We use then this selection rule in a two-step procedure to evaluate the interacting neighborhoods. The selection rule selects a small prior set of possible interacting points and a cutting step remove from this prior set the irrelevant points. We also prove that the Ising models satisfy the assumptions of the main theorems, without restrictions on the temperature, on the structure of the interacting graph or on the range of the interactions. It provides therefore a large class of applications for our results. We give a computationally efficient procedure in these models. We finally show the practical efficiency of our approach in a simulation study.
Resumo:
In this work is reported the sensitization effect by polymer matrices on the photoluminescence properties of diaquatris(thenoyltrifluoroacetonate)europium(III), [Eu(tta)(3)(H(2)O)(2)], doped into poly-beta-hydroxybutyrate (PHB) with doping percentage at 1, 3, 5, 7 and 10% (mass) in film form. TGA results indicated that the Eu(3+) complex precursor was immobilized in the polymer matrix by the interaction between the Eu(3+) complex and the oxygen atoms of the PHB polymer when the rare earth complex was incorporated in the polymeric host. The thermal behaviour of these luminescent systems is similar to that of the undoped polymer, however, the T(onset) temperature of decomposition decreases with increase of the complex doping concentration. The emission spectra of the Eu(3+) complex doped PHB films recorded at 298 K exhibited the five characteristic bands arising from the (5)D(0) -> (7)F(J) intraconfigurational transitions (J = 0-4). The fact that the quantum efficiencies eta of the doped film increased significantly revealed that the polymer matrix acts as an efficient co-sensitizer for Eu(3+) luminescent centres and therefore enhances the quantum efficiency of the emitter (5)D(0) level. The luminescence intensity decreases, however, with increasing precursor concentration in the doped polymer to greater than 5% where a saturation effect is observed at this specific doping percentage, indicating that changes in the polymeric matrix improve the absorption property of the film, consequently quenching the luminescent effect.
Resumo:
The adaptive process in motor learning was examined in terms of effects of varying amounts of constant practice performed before random practice. Participants pressed five response keys sequentially, the last one coincident with the lighting of a final visual stimulus provided by a complex coincident timing apparatus. Different visual stimulus speeds were used during the random practice. 33 children (M age=11.6 yr.) were randomly assigned to one of three experimental groups: constant-random, constant-random 33%, and constant-random 66%. The constant-random group practiced constantly until they reached a criterion of performance stabilization three consecutive trials within 50 msec. of error. The other two groups had additional constant practice of 33 and 66%, respectively, of the number of trials needed to achieve the stabilization criterion. All three groups performed 36 trials under random practice; in the adaptation phase, they practiced at a different visual stimulus speed adopted in the stabilization phase. Global performance measures were absolute, constant, and variable errors, and movement pattern was analyzed by relative timing and overall movement time. There was no group difference in relation to global performance measures and overall movement time. However, differences between the groups were observed on movement pattern, since constant-random 66% group changed its relative timing performance in the adaptation phase.
Resumo:
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
Resumo:
Candida rugosa lipase was immobilized by covalent binding on hybrid matrix of polysiloxane-polyvinyl alcohol chemically modified with different activating agents as glutaraldehyde, sodium metaperiodate and carbonyldiimidazole. The experimental results suggested that functional activating agents render different interactions between enzyme and support, producing consequently alterations in the optimal reaction conditions. Properties of the immobilized systems were assessed and their performance on hydrolytic and synthetic reactions were evaluated and compared with the free enzyme. In hydrolytic reactions using p-nitrophenyl palmitate as substrate all immobilized systems showed higher thermal stability and optima pH and temperature values in relation to the free lipase. Among the activating compounds, carbonyldiimidazole resulted in a total recovery of activity on the support and the highest thermal stability. For the butyl butyrate synthesis, the best performance (molar conversion of 95% and volumetric productivity of 2.33 g L-1 h(-1)) was attained with the lipase immobilized on POS-PVA activated with sodium metaperiodate. The properties of the support and immobilized derivatives were also evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopies and chemical composition (FTIR). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This letter presents some notes on the use of the Gram matrix in observability analysis. This matrix is constructed considering the rows of the measurement Jacobian matrix as vectors, and it can be employed in observability analysis and restoration methods. The determination of nonredundant pseudo-measurements (normally injections pseudo-measurements) for merging observable islands into an observable (single) system is carried out analyzing the pivots of the Gram matrix. The Gram matrix can also be used to verify local redundancy, which is important in measurement system planning. Some numerical examples` are used to illustrate these features. Others features of the Gram matrix are under study.
Resumo:
This communication proposes a simple way to introduce fibers into finite element modelling. This is a promising formulation to deal with fiber-reinforced composites by the finite element method (FEM), as it allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced into the pre-existent finite element numerical system to consider any distribution of fiber inclusions. In other words, the size of the system of equations used to solve a non-reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic is the reduced work required by the user to introduce fibers, avoiding `rebar` elements, node-by-node geometrical definitions or even complex mesh generation. An additional characteristic of the technique is the possibility of representing unbounded stresses at the end of fibers using a finite number of degrees of freedom. Further studies are required for non-linear applications in which localization may occur. Along the text the linear formulation is presented and the bounded connection between fibers and continuum is considered. Four examples are presented, including non-linear analysis, to validate and show the capabilities of the formulation. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
This paper proposes a boundary element method (BEM) model that is used for the analysis of multiple random crack growth by considering linear elastic fracture mechanics problems and structures subjected to fatigue. The formulation presented in this paper is based on the dual boundary element method, in which singular and hyper-singular integral equations are used. This technique avoids singularities of the resulting algebraic system of equations, despite the fact that the collocation points coincide for the two opposite crack faces. In fracture mechanics analyses, the displacement correlation technique is applied to evaluate stress intensity factors. The maximum circumferential stress theory is used to evaluate the propagation angle and the effective stress intensity factor. The fatigue model uses Paris` law to predict structural life. Examples of simple and multi-fractured structures loaded until rupture are considered. These analyses demonstrate the robustness of the proposed model. In addition, the results indicate that this formulation is accurate and can model localisation and coalescence phenomena. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses the time-variant reliability analysis of structures with random resistance or random system parameters. It deals with the problem of a random load process crossing a random barrier level. The implications of approximating the arrival rate of the first overload by an ensemble-crossing rate are studied. The error involved in this so-called ""ensemble-crossing rate"" approximation is described in terms of load process and barrier distribution parameters, and in terms of the number of load cycles. Existing results are reviewed, and significant improvements involving load process bandwidth, mean-crossing frequency and time are presented. The paper shows that the ensemble-crossing rate approximation can be accurate enough for problems where load process variance is large in comparison to barrier variance, but especially when the number of load cycles is small. This includes important practical applications like random vibration due to impact loadings and earthquake loading. Two application examples are presented, one involving earthquake loading and one involving a frame structure subject to wind and snow loadings. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Mass transfer across a gas-liquid interface was studied theoretically and experimentally, using transfer of oxygen into water as the gas-liquid system. The experimental results support the conclusions of a theoretical description of the concentration field that uses random square waves approximations. The effect of diffusion over the concentration records was quantified. It is shown that the peak of the normalized rills concentration fluctuation profiles must be lower than 0.5, and that the position of the peak of the rms value is an adequate measure of the thickness of the diffusive layer. The position of the peak is the boundary between the regions more subject to molecular diffusion or to turbulent transport of dissolved mass.
Resumo:
We present a method to simulate the Magnetic Barkhausen Noise using the Random Field Ising Model with magnetic long-range interaction. The method allows calculating the magnetic flux density behavior in particular sections of the lattice reticule. The results show an internal demagnetizing effect that proceeds from the magnetic long-range interactions. This demagnetizing effect induces the appearing of a magnetic pattern in the region of magnetic avalanches. When compared with the traditional method, the proposed numerical procedure neatly reduces computational costs of simulation. (c) 2008 Published by Elsevier B.V.
Resumo:
A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.
Resumo:
In this work, the stress relaxation behavior of PMMA/PS blends, with or without random copolymer addition, submitted to step shear strain experiments in the linear and nonlinear regime was studied. The effect of blend composition (ranging from 10 to 30 wt.% of dispersed phase), viscosity ratio (ranging from 0.1 to 7.5), and random copolymer addition (for concentrations up to 8 wt.% with respect to the dispersed phase) was evaluated and correlated to the evolution of the morphology of the blends. All blends presented three relaxation stages: a first fast relaxation which was attributed to the relaxation of the pure phases, a second one which was characterized by the presence of a plateau, and a third fast one. The relaxation was shown to be faster for less extended and smaller droplets and to be influenced by coalescence for blends with a dispersed phase concentration larger than 20 wt.%. The relaxation of the blend was strongly influenced by the matrix viscosity. The addition of random copolymer resulted in a slower relaxation of the droplets.
Resumo:
Gamma ray tomography experiments have been carried out to detect spatial patterns in the porosity in a 0.27 m diameter column packed with steel Rashig rings of different sizes: 12.6, 37.9, and 76 mm. using a first generation CT system (Chen et al., 1998). A fast Fourier transform tomographic reconstruction algorithm has been used to calculate the spatial variation over the column cross section. Cross-sectional gas porosity and solid holdup distribution were determinate. The values of cross-sectional average gas porosity were epsilon=0.849, 0.938 and 0.966 for the 12.6, 37.9, and 76 mm rings, respectively. Radial holdup variation within the packed bed has been determined. The variation of the circumferentially averaged gas holdup in the radial direction indicates that the porosity in the column wall region is a somewhat higher than that in the bulk region, due to the effect of the column wall. (C) 2009 Elsevier Ltd. All rights reserved.