955 resultados para Random Subspace Method
Resumo:
It has been shown in recent ALICE@LHC measurements that the odd flow harmonics, in particular, a directed flow v1, occurred to be weak and dominated by random fluctuations. In this work we propose a new method, which makes the measurements more sensitive to the flow patterns showing global collective symmetries. We demonstrate how the longitudinal center of mass rapidity fluctuations can be identified, and then the collective flow analysis can be performed in the event-by-event center of mass frame. Such a method can be very effective in separating the flow patterns originating from random fluctuations, and the flow patterns originating from the global symmetry of the initial state.
Resumo:
In this paper we consider a stochastic process that may experience random reset events which suddenly bring the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention on monotonic continuous-time random walks with a constant drift: The process increases between the reset events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these combined factors interesting properties emerge, like the existence (for any drift strength) of a stationary transition probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas for two extreme statistics, the survival probability, and the mean exit time, are also derived. To corroborate in an independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in full agreement with the analytical predictions.
Resumo:
Peer-reviewed
Resumo:
The author studies random walk estimators for radiosity with generalized absorption probabilities. That is, a path will either die or survive on a patch according to an arbitrary probability. The estimators studied so far, the infinite path length estimator and finite path length one, can be considered as particular cases. Practical applications of the random walks with generalized probabilities are given. A necessary and sufficient condition for the existence of the variance is given, together with heuristics to be used in practical cases. The optimal probabilities are also found for the case when one is interested in the whole scene, and are equal to the reflectivities
Resumo:
This study reports a case of a gonadotropin-releasing hormone agonist trigger in a young female with myelodysplastic syndrome (MDS) who underwent fertility preservation using random-start controlled ovarian stimulation. This method involves the stimulation of the ovary regardless of a patient's menstrual-cycle phase. A review of the related literature is also provided. A 17-year-old patient was diagnosed with MDS and required initiation of peripheral blood stem cell transplantation within a maximum of 3 weeks and was in the luteal phase of the menstrual cycle when the possibility of attempting preservation of fertility was presented to her. She opted for a random-start controlled ovarian stimulation with gonadotropins. With successful hemorrhagic prophylaxis, 17 oocytes were retrieved including 10 mature and 7 immature oocytes. Of the immature oocytes, 3 were successfully matured in vitro and a vitrification protocol was used to freeze the 13 mature oocytes.
Resumo:
It is common practice to initiate supplemental feeding in newborns if body weight decreases by 7-10% in the first few days after birth (7-10% rule). Standard hospital procedure is to initiate intravenous therapy once a woman is admitted to give birth. However, little is known about the relationship between intrapartum intravenous therapy and the amount of weight loss in the newborn. The present research was undertaken in order to determine what factors contribute to weight loss in a newborn, and to examine the relationship between the practice of intravenous intrapartum therapy and the extent of weight loss post-birth. Using a cross-sectional design with a systematic random sample of 100 mother-baby dyads, we examined properties of delivery that have the potential to impact weight loss in the newborn, including method of delivery, parity, duration of labour, volume of intravenous therapy, feeding method, and birth attendant. This study indicated that the volume of intravenous therapy and method of delivery are significant predictors of weight loss in the newborn (R2=15.5, p<0.01). ROC curve analysis identified an intravenous volume cut-point of 1225 ml that would elicit a high measure of sensitivity (91.3%), and demonstrated significant Kappa agreement (p<0.01) with excess newborn weight loss. It was concluded that infusion of intravenous therapy and natural birth delivery are discriminant factors that influence excess weight loss in newborn infants. Acknowledgement of these factors should be considered in clinical practice.
Resumo:
This paper presents a new theory of random consumer demand. The primitive is a collection of probability distributions, rather than a binary preference. Various assumptions constrain these distributions, including analogues of common assumptions about preferences such as transitivity, monotonicity and convexity. Two results establish a complete representation of theoretically consistent random demand. The purpose of this theory of random consumer demand is application to empirical consumer demand problems. To this end, the theory has several desirable properties. It is intrinsically stochastic, so the econometrician can apply it directly without adding extrinsic randomness in the form of residuals. Random demand is parsimoniously represented by a single function on the consumption set. Finally, we have a practical method for statistical inference based on the theory, described in McCausland (2004), a companion paper.
Resumo:
L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.
Resumo:
Background: An important challenge in conducting social research of specific relevance to harm reduction programs is locating hidden populations of consumers of substances like cannabis who typically report few adverse or unwanted consequences of their use. Much of the deviant, pathologized perception of drug users is historically derived from, and empirically supported, by a research emphasis on gaining ready access to users in drug treatment or in prison populations with higher incidence of problems of dependence and misuse. Because they are less visible, responsible recreational users of illicit drugs have been more difficult to study. Methods: This article investigates Respondent Driven Sampling (RDS) as a method of recruiting experienced marijuana users representative of users in the general population. Based on sampling conducted in a multi-city study (Halifax, Montreal, Toronto, and Vancouver), and compared to samples gathered using other research methods, we assess the strengths and weaknesses of RDS recruitment as a means of gaining access to illicit substance users who experience few harmful consequences of their use. Demographic characteristics of the sample in Toronto are compared with those of users in a recent household survey and a pilot study of Toronto where the latter utilized nonrandom self-selection of respondents. Results: A modified approach to RDS was necessary to attain the target sample size in all four cities (i.e., 40 'users' from each site). The final sample in Toronto was largely similar, however, to marijuana users in a random household survey that was carried out in the same city. Whereas well-educated, married, whites and females in the survey were all somewhat overrepresented, the two samples, overall, were more alike than different with respect to economic status and employment. Furthermore, comparison with a self-selected sample suggests that (even modified) RDS recruitment is a cost-effective way of gathering respondents who are more representative of users in the general population than nonrandom methods of recruitment ordinarily produce. Conclusions: Research on marijuana use, and other forms of drug use hidden in the general population of adults, is important for informing and extending harm reduction beyond its current emphasis on 'at-risk' populations. Expanding harm reduction in a normalizing context, through innovative research on users often overlooked, further challenges assumptions about reducing harm through prohibition of drug use and urges consideration of alternative policies such as decriminalization and legal regulation.
Resumo:
The present research problem is to study the existing encryption methods and to develop a new technique which is performance wise superior to other existing techniques and at the same time can be very well incorporated in the communication channels of Fault Tolerant Hard Real time systems along with existing Error Checking / Error Correcting codes, so that the intention of eaves dropping can be defeated. There are many encryption methods available now. Each method has got it's own merits and demerits. Similarly, many crypt analysis techniques which adversaries use are also available.
Resumo:
In many situations probability models are more realistic than deterministic models. Several phenomena occurring in physics are studied as random phenomena changing with time and space. Stochastic processes originated from the needs of physicists.Let X(t) be a random variable where t is a parameter assuming values from the set T. Then the collection of random variables {X(t), t ∈ T} is called a stochastic process. We denote the state of the process at time t by X(t) and the collection of all possible values X(t) can assume, is called state space
Resumo:
The work presented in this paper belongs to the power quality knowledge area and deals with the voltage sags in power transmission and distribution systems. Propagating throughout the power network, voltage sags can cause plenty of problems for domestic and industrial loads that can financially cost a lot. To impose penalties to responsible party and to improve monitoring and mitigation strategies, sags must be located in the power network. With such a worthwhile objective, this paper comes up with a new method for associating a sag waveform with its origin in transmission and distribution networks. It solves this problem through developing hybrid methods which hire multiway principal component analysis (MPCA) as a dimension reduction tool. MPCA reexpresses sag waveforms in a new subspace just in a few scores. We train some well-known classifiers with these scores and exploit them for classification of future sags. The capabilities of the proposed method for dimension reduction and classification are examined using the real data gathered from three substations in Catalonia, Spain. The obtained classification rates certify the goodness and powerfulness of the developed hybrid methods as brand-new tools for sag classification
Resumo:
One of the key aspects in 3D-image registration is the computation of the joint intensity histogram. We propose a new approach to compute this histogram using uniformly distributed random lines to sample stochastically the overlapping volume between two 3D-images. The intensity values are captured from the lines at evenly spaced positions, taking an initial random offset different for each line. This method provides us with an accurate, robust and fast mutual information-based registration. The interpolation effects are drastically reduced, due to the stochastic nature of the line generation, and the alignment process is also accelerated. The results obtained show a better performance of the introduced method than the classic computation of the joint histogram
Resumo:
The author studies random walk estimators for radiosity with generalized absorption probabilities. That is, a path will either die or survive on a patch according to an arbitrary probability. The estimators studied so far, the infinite path length estimator and finite path length one, can be considered as particular cases. Practical applications of the random walks with generalized probabilities are given. A necessary and sufficient condition for the existence of the variance is given, together with heuristics to be used in practical cases. The optimal probabilities are also found for the case when one is interested in the whole scene, and are equal to the reflectivities
Resumo:
The author studies the error and complexity of the discrete random walk Monte Carlo technique for radiosity, using both the shooting and gathering methods. The author shows that the shooting method exhibits a lower complexity than the gathering one, and under some constraints, it has a linear complexity. This is an improvement over a previous result that pointed to an O(n log n) complexity. The author gives and compares three unbiased estimators for each method, and obtains closed forms and bounds for their variances. The author also bounds the expected value of the mean square error (MSE). Some of the results obtained are also shown