126 resultados para Ramps.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean, Va.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean Va.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean, Va.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Historically, calcitonin gene-related peptide (CGRP) receptors have been divided into two classes, CGRP(1) and CGRP(2).After the cloning of calcitonin receptor-like receptor (CLR) and receptor activity-modifying proteins (RAMPs), it became clear that the CGRP(1) receptor was a complex between CLR and RAMP1. It is now apparent that the CGRP(2) receptor phenotype is the result of CGRP acting at receptors for amylin and adrenomedullin. Accordingly, the term "CGRP(2)" receptor should no longer be used, and the "CGRP(1)" receptor should be known as the "CGRP" receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) have structural similarities, interact with each others receptors (calcitonin receptor-like receptor (CLR)/receptor-activity-modifying proteins (RAMPs)) and show overlapping biological activities. AM and CGRP receptors are chiefly coupled to cAMP production. In this study, a method of primary dissociated cell culture was used to investigate the presence of AM and CGRP receptors and their effects on cAMP production in embryonic spinal cord cells. 2 Both neuronal and non-neuronal CLR immunopositive cells were present in our model. 3 High affinity, specific [ 125I]-AM binding sites (K(d) 79±9 pM and B(max) 571±34 fmol mg -1 protein) were more abundant than specific [ 125I]-CGRP binding sites (K(d) 12±0.7 pM and B(max) 32±2 fmol mg -1 protein) in embryonic spinal cord cells. 4 Specific [ 125I]-AM binding was competed by related molecules with a ligand selectivity profile of rAM>hAM(22-52)>rCGRPα>CGRP(8-37) ≫[r-(r*,s*)]-N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl] carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1, 4-dihydro-2-oxo-3(2H)-quinazolinyl)-,1-piperidinecarboxamide (BIBN4096BS). 5 Specific [ 125I]-CGRP binding was competed by rCGRPα>rAM≥ CGRP(8-37)≥BIBN4096BS>hAM(22-52). 6 Cellular levels of cAMP were increased by AM (pEC"5"0 10.2±0.2) and less potently by rCGRPα (pEC"5"0 8.9±0.4). rCGRPα-induced cAMP accumulation was effectively inhibited by CGRP(8-37) (pA"2 7.63±0.44) and hAM(22-52) (pA"2 6.18±0.21) while AM-stimulation of cAMP levels was inhibited by CGRP(8-37) (pA"2 7.41±0.15) and AM(22-52) (pA"2 7.26±0.18). BIBN4096BS only antagonized the effects of CGRP (pA"2 8.40±0.30) on cAMP accumulation. 7 These pharmacological profiles suggest that effects of CGRP are mediated by the CGRP"1 (CLR/RAMP1) receptor in our model while those of AM are related to the activation of the AM"1 (CLR/RAMP2) receptor subtype. © 2006 Nature Publishing Group All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Receptor activity modifying proteins (RAMPs) are a family of single-pass transmembrane proteins that dimerize with G-protein-coupled receptors. They may alter the ligand recognition properties of the receptors (particularly for the calcitonin receptor-like receptor, CLR). Very little structural information is available about RAMPs. Here, an ab initio model has been generated for the extracellular domain of RAMP1. The disulfide bond arrangement (Cys 27-Cys82, Cys40-Cys72, and Cys 57-Cys104) was determined by site-directed mutagenesis. The secondary structure (a-helices from residues 29-51, 60-80, and 87-100) was established from a consensus of predictive routines. Using these constraints, an assemblage of 25,000 structures was constructed and these were ranked using an all-atom statistical potential. The best 1000 conformations were energy minimized. The lowest scoring model was refined by molecular dynamics simulation. To validate our strategy, the same methods were applied to three proteins of known structure; PDB:1HP8, PDB:1V54 chain H (residues 21-85), and PDB:1T0P. When compared to the crystal structures, the models had root mean-square deviations of 3.8 Å, 4.1 Å, and 4.0 Å, respectively. The model of RAMP1 suggested that Phe93, Tyr 100, and Phe101 form a binding interface for CLR, whereas Trp74 and Phe92 may interact with ligands that bind to the CLR/RAMP1 heterodimer. © 2006 by the Biophysical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcitonin (CT) receptors dimerize with receptor activity-modifying proteins (RAMPs) to create high-affinity amylin (AMY) receptors, but there is no reliable means of pharmacologically distinguishing these receptors. We used agonists and antagonists to define their pharmacology, expressing the CT (a) receptor alone or with RAMPs in COS-7 cells and measuring cAMP accumulation. Intermedin short, otherwise known as adrenomedullin 2, mirrored the action of αCGRP, being a weak agonist at CT(a), AMY 2(a), and AMY3(a) receptors but considerably more potent at AMY1(a) receptors. Likewise, the linear calcitonin gene-related peptide (CGRP) analogs (Cys(ACM)2,7)hαCGRP and (Cys(Et) 2,7)haCGRP were only effective at AMY1(a) receptors, but they were partial agonists. As previously observed in COS-7 cells, there was little induction of the AMY2(a) receptor phenotype; thus, AMY 2(a) was not examined further in this study. The antagonist peptide salmon calcitonin8-32 (sCT8-32) did not discriminate strongly between CT and AMY receptors; however, AC187 was a more effective antagonist of AMY responses at AMY receptors, and AC413 additionally showed modest selectivity for AMY1(a) over AMY3(a) receptors. CGRP8-37 also demonstrated receptor-dependent effects. CGRP 8-37 more effectively antagonized AMY at AMY1(a) than AMY3(a) receptors, although it was only a weak antagonist of both, but it did not inhibit responses at the CT(a) receptor. Low CGRP 8-37 affinity and agonism by linear CGRP analogs at AMY 1(a) are the classic signature of a CGRP2 receptor. Our data indicate that careful use of combinations of agonists and antagonists may allow pharmacological discrimination of CT(a), AMY1(a), and AMY3(a) receptors, providing a means to delineate the physiological significance of these receptors. Copyright © 2005 The American Society for Pharmacology and Experimental Therapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Historically, CGRP receptors have been classified as CGRP(1) or CGRP(2) subtypes, chiefly depending on their affinity for the antagonist CGRP(8-37). It has been shown that the complex between calcitonin receptor-like receptor (CRLR or CL) and receptor activity modifying protein (RAMP) 1 provides a molecular correlate for the CGRP(1) receptor; however this does not explain the range of affinities seen for CGRP(8-37) in isolated tissues. It is suggested that these may largely be explained by a combination of methodological factors and CGRP-responsive receptors generated by CL and RAMP2 or RAMP3 and complexes of RAMPs with the calcitonin receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adrenomedullin is a vascular tissue peptide and a member of the calcitonin family of peptides, which includes calcitonin calcitonin-gene-related peptide (CGRP) and amylin. Its many biological actions are mediated via CGRP type 1 (CGRP(1)) receptors and by specific adrenomedullin receptors. Although the pharmacology of these receptors is distinct, they are both represented in molecular terms by the type II family G-protein-coupled receptor, calcitonin-receptor-like receptor (CRLR). The specificity here is defined by co-expression of receptor-activity-modifying proteins (RAMPs). CGRP(1) receptors are represented by CRLR and RAMP1, and specific adrenomedullin receptors by CRLR and RAMP2 or 3. Here we discuss how CRLR/RAMP2 relates to adrenomedullin binding, pharmacology and pathophysiology, and how chemical cross-linking of receptor-ligand complexes in tissue relates to that in CRLR/RAMP2-expressing cells. CRLR, like other type II family G-protein-coupled receptors, signals via G(s) and adenylate cyclase activation. We demonstrated that adrenomedullin signalling in cell lines expressing specific adrenomedullin receptors followed this expected pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calcitonin family of peptides comprises calcitonin, amylin two calcitonin gene-related peptides (CGRPs), and adrenomedullin. The first calcitonin receptor was cloned in 1991. Its pharmacology is complicated by the existence of several splice variants. The receptors for the other members the family are made up of subunits. The calcitonin-like receptor (CL receptor) requires a single transmembrane domain protein, termed receptor activity modifying protein, RAMP1, to function as a CGRP receptor. RAMP2 and -3 enable the same CL receptor to behave as an adrenomedullin receptor. Although the calcitonin receptor does not require RAMP to bind and respond to calcitonin, it can associate with the RAMPs, resulting in a series of receptors that typically have high affinity for amylin and varied affinity for CGRP. This review aims to reconcile what is observed when the receptors are reconstituted in vitro with the properties they show in native cells and tissues. Experimental conditions must be rigorously controlled because different degrees of protein expression may markedly modify pharmacology in such a complex situation. Recommendations, which follow International Union of Pharmacology guidelines, are made for the nomenclature of these multimeric receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal burst firing in the subthalamic nucleus (STN) is one of the hallmarks of dopamine depletion in Parkinson's disease. Here, we have determined the postsynaptic effects of dopamine in the STN and the functional consequences of dopamine receptor modulation on burst firing in vitro. STN cells displayed regular spiking activity at a rate of 7.9 +/- 0.5 Hz. Application of dopamine (30 mu M) induced membrane depolarisations accompanied by an increase in firing rate of mean 12.0 +/- 0.6 Hz in all 69 cells. The dopamine effect was mimicked by the dopamine D1/D5 receptor agonist SKF38393 (10 mu M, 17 cells) and the dopamine D2-like receptor agonist quinpirole (10 mu M, 35 cells), partly reduced by D1/D5 antagonist SCH23390 (2 mu M, seven cells), but unaffected by the D2 antagonists sulpiride (10 mu M, seven cells) or eticlopride (10 mu M, six cells). Using voltage ramps, dopamine induced an inward current of 69 +/- 9.4 pA at a holding potential of -60 mV (n = 17). This current was accompanied by an increase in input conductance of 1.55 +/- 0.35 nS which reversed at -30.6 +/- 2.3 mV, an effect mimicked by SKF38393 (10 AM, nine cells). Similar responses were observed when measuring instantaneous current evoked by voltage steps and in the presence of the I-h blocker, ZD7288, indicating effects independent of I-h. The increase in conductance was blocked by SCH23390 (2 mu M, n = 4), mimicked by the activator of adenylyl cyclase forskolin (10 mu M, n = 7) and blocked by H-89, an inhibitor of cyclic AMP dependent protein kinase A (10 PM, n = 6). These results indicate that the dopamine depolarisation is in part mediated by D1/D5 receptor mediated activation of a cyclic-nucleotide gated (CNG) non-specific cation conductance. This conductance contributes to the membrane depolarisation that changes STN neuronal bursting to more regular activity by significantly increasing burst duration and number of spikes per burst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of receptor activity modifying protein 1 (RAMP1) in forming receptors with the calcitonin receptor-like receptor (CLR) and the calcitonin receptor (CTR) was examined by producing chimeras between RAMP1 and RAMP3. RAMPs have three extracellular helices. Exchange of helix 1 of the RAMPs or residues 62-69 in helix 2 greatly reduced CLR trafficking (a marker for CLR association). Modeling suggests that these exchanges alter the CLR recognition site on RAMP1, which is more exposed than on RAMP3. Exchange of residues 86-89 of RAMP1 had no effect on the trafficking of CLR but reduced the potency of human (h) alphaCGRP and adrenomedullin. However, these alterations to RAMP1 had no effect on the potency of hbetaCGRP. These residues of RAMP1 lie at the junction of helix 3 and its connecting loop with helix 2. Modeling suggests that the loop is more exposed in RAMP1 than RAMP3; it may play an important role in peptide binding, either directly or indirectly. Exchange of residues 90-94 of RAMP1 caused a modest reduction in CLR expression and a 15-fold decrease in CGRP potency. It is unlikely that the decrease in expression is enough to explain the reduction in potency, and so these may have dual roles in recognizing CLR and CGRP. For CTR, only 6 out of 26 chimeras covering the extracellular part of RAMP1 did not reduce agonist potency. Thus the association of CTR with RAMP1 seems more sensitive to changes in RAMP1 structure induced by the chimeras than is CLR.