973 resultados para Rainfall data


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The flow of sediment from cropped land is the main pollutant of water sources in rural areas. Due to this fact, it is necessary to develop and implement technologies that will reduce water and sediment discharges. Accordingly, an experiment was conducted in the Department of Biosystems Engineering - ESALQ / USP, Piracicaba - SP with the objective to evaluate the effect of different soil cover (bean, grass and bare ground) and erosion control practices (wide base terraces and infiltration furrows in slopes (no practices to control erosion)) while measuring water losses in runoff. The statistical design adopted was randomized blocks in a 3x3 factorial scheme resulting in 9 treatments with 3 replicates (blocks). The period of rainfall data collection was December 6, 2007 to April 11, 2008. A 21.1 cm diameter rain gauge was installed in the experimental area. Terraces were the most efficient practices for reducing erosion losses in the treatments with infiltration furrows being better than the control treatment. Bean was more effective than grass in reducing erosion. Bare ground was the least efficient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction between atmosphere–land–ocean–biosphere systems plays a prominent role on the atmospheric dynamics and on the convective rainfall distribution over the West Africa monsoon area during the boreal summer. In particular, the initialization of convective systems in the Sub – Sahelian region has been directly linked to soil moisture heterogeneities identified as the major triggering, development and propagation of convective systems. The present study aims at investigating African monsoon large scale convective dynamics and rainfall diurnal cycle through an exploration of the hypothesis behind the mechanisms of a monsoon phenomenon as an emergence of a collective dynamics of many propagating convective systems. Such hypothesis is based on the existence of an internal self – regulation mechanism among the various components. To achieve these results a multiple analysis was performed based on remote sensed rainfall dataset, and global and regional modelling data for a period of 5 seasons: 2004 - 2008. Satellite rainfall data and convective occurrence variability were studied for assessing typical spatio – temporal signatures and characteristics with an emphasis to the diurnal cycle footprint. A global model and regional model simulation datasets, specifically developed for this analysis and based on Regional Atmospheric Modelling System – RAMS, have been analysed. Results from numerical model datasets highlight the evidence of a synchronization between the destabilization of the convective boundary layer and rainfall occurrence due to the solar radiation forcing through the latent heat release. This supports the conclusion that the studied interacting systems are associated with a process of mutual adjustment of rhythms. Furthermore, this rainfall internal coherence was studied in relation to the West African Heat Low pressure system, which has a prominent role in the large scale summer variability over the Mediterranean area since it is acting as one of dynamic link between sub tropical and midlatitudes variability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article describes the indigenous knowledge (IK) that agro-pastoralists in larger Makueni District, Kenya hold and how they use it to monitor, mitigate and adapt to drought. It examines ways of integrating IK into formal monitoring, how to enhance its value and acceptability. Data was collected through target interviews, group discussions and questionnaires covering 127 households in eight villages. Daily rainfall data from 1961–2003 were analysed. Results show that agro-pastoralists hold IK on indicators of rainfall variability; they believe in IK efficacy and they rely on them. Because agro-pastoralists consult additional sources, the authors interpret that IK forms a basic knowledge frame within which agro-pastoralists position and interpret meteorological forecasts. Only a few agro-pastoralists adapt their practices in anticipation of IK-based forecasts partly due to the conditioning of the actors to the high rainfall variability characteristic of the area and partly due to lack of resources. Non-drought factors such as poverty, inadequate resources and lack of preparedness expose agro-pastoralists to drought impacts and limit their adaptive capacity. These factors need to be understood and effectively addressed to increase agro-pastoralists’ decision options and the influence of IK-based forecasts on their decision-making patterns. The limited intergenerational transfer of IK currently threatens its existence in the longer term. One way to ensure its continued existence and use is to integrate IK into the education curriculum and to link IK with formal climate change research through the participation of the local people. However, further studies are necessary to address the reliability and validity of the identified IK indicators of climate variability and change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In-service hardened concrete pavement suffers from environmental loadings caused by curling and warping of the slab. Traditionally, these loadings are computed on the basis of treating the slab as an elastic material, and of evaluating separately the curling and warping components. This dissertation simulates temperature distribution and moisture distribution through the slabs by use of a developed numerical model that couples the heat transfer and moisture transport. The computation of environmental loadings treats the slab as an elastic-viscous material, which considers the relaxation behavior and Pickett effect of the concrete. The heat transfer model considers the impacts of solar radiation, wind speed, air temperature, pavement slab albedo, etc. on the pavement temperature distribution. This dissertation assesses the difference between documented models that aim to predict pavement temperature, highlighting their pros and cons. The moisture transport model is unique for the documented models; it mimics the wetting and drying events occurring at the slab surface. These events are estimated by a proposed statistical algorithm, which is verified by field rainfall data. Analysis of the predicted results examines on the roles of the local air RH (relative humidity), wind speed, rainy pattern in the moisture distribution through the slab. The findings reveal that seasonal air RH plays a decisive role on the slab‘s moisture distribution; but wind speed and its daily variation, daily RH variation, and seasonal rainfall pattern plays only a secondary role. This dissertation sheds light on the computation of environmental loadings that in-service pavement slabs suffer from. Analysis of the computed stresses centers on the stress relaxation near the surface, stress evolution after the curing ends, and the impact of construction season on the stress‘s magnitude. An unexpected finding is that the total environmental loadings at the cyclically-stable state divert from the thermal stresses. At such a state, the total stress at the daytime is roughly equal to the thermal stress; whereas the total stress during the nighttime is far greater than the thermal stress. An explanation for this phenomenon is that during the night hours, the decline of the slab‘s near-surface temperature leads to a drop of the near-surface RH. This RH drop results in contraction therein and develops additional tensile stresses. The dissertation thus argues that estimating the environmental loadings by solely computing the thermally-induced stresses may reach delusive results. It recommends that the total environmental loadings of in-service slabs should be estimated by a sophisticated model coupling both moisture component and temperature component.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El índice de erosividad (EI30) y su espacialización fueron determinados para las cuencas de contribución del sistema hidroeléctrico de la reserva Cachoeira Dourada, localizada entre los Estados de Goias y Minas Gerais, limitada por las coordenadas 640000-760000 m W. y 7910000-7975000 m S. UTM zona 22, Datum Córrego Alegre. Se trataron los datos del promedio mensual y anual de las precipitaciones correspondientes a ocho localidades para un periodo de treinta años. Existe una distribución irregular de precipitación en la región y en consecuencia una espacialización no uniforme de los índices de erosión en el área de influencia de la reserva. Los valores más altos de precipitación coinciden con el periodo de preparación de la tierra para el cultivo y el desarrollo de las plantas de ciclo anual, principalmente soja y maíz.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En la cuenca del Plata, durante las últimas dos décadas del siglo XX, se desarrollaron importantes inundaciones producto de los cambios ocurridos en el sistema climático global y, como el área del Gran La Plata (partidos de Berisso, Ensenada y La Plata) no escapa a este problema, se ha tomado como caso para nuestra investigación. Se analiza la distribución temporal de las precipitaciones en la ciudad de La Plata (provincia de Buenos Aires, Argentina), para el período comprendido entre las últimas décadas del siglo XX y la actualidad. En el Gran La Plata el problema de las inundaciones es resultado de la confluencia de tres factores: las precipitaciones (sobre todo cuando se producen con gran intensidad), las napas freáticas que han aumentado su presión hacia arriba por haberse elevado y la sudestada que provoca la crecida de los ríos. El estudio se realizó considerando los valores diarios de precipitación disponibles para la localidad, brindados por estación meteorológica La Plata Aero, dependiente del Servicio Meteorológico Nacional, y los datos de inundaciones obtenidos del diario "El Día", de circulación local. La variación temporal se estudió a escala anual y mensual, detectándose cambios en monto e intensidad que, además de responder al incremento de las precipitaciones acaecido en la pradera pampeana en las últimas décadas, son una llamada de atención para la planificación de futuros emprendimientos en la ciudad y toma de decisiones en el caso de eventos hidrológicos extremos, como es el caso de las inundaciones. En los resultados de este análisis se observó que las inundaciones en la década 1971 - 1980 fueron 25, y que se incrementaron a 78 en la última década estudiada (1991-2000).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En la cuenca del Plata, durante las últimas dos décadas del siglo XX, se desarrollaron importantes inundaciones producto de los cambios ocurridos en el sistema climático global y, como el área del Gran La Plata (partidos de Berisso, Ensenada y La Plata) no escapa a este problema, se ha tomado como caso para nuestra investigación. Se analiza la distribución temporal de las precipitaciones en la ciudad de La Plata (provincia de Buenos Aires, Argentina), para el período comprendido entre las últimas décadas del siglo XX y la actualidad. En el Gran La Plata el problema de las inundaciones es resultado de la confluencia de tres factores: las precipitaciones (sobre todo cuando se producen con gran intensidad), las napas freáticas que han aumentado su presión hacia arriba por haberse elevado y la sudestada que provoca la crecida de los ríos. El estudio se realizó considerando los valores diarios de precipitación disponibles para la localidad, brindados por estación meteorológica La Plata Aero, dependiente del Servicio Meteorológico Nacional, y los datos de inundaciones obtenidos del diario "El Día", de circulación local. La variación temporal se estudió a escala anual y mensual, detectándose cambios en monto e intensidad que, además de responder al incremento de las precipitaciones acaecido en la pradera pampeana en las últimas décadas, son una llamada de atención para la planificación de futuros emprendimientos en la ciudad y toma de decisiones en el caso de eventos hidrológicos extremos, como es el caso de las inundaciones. En los resultados de este análisis se observó que las inundaciones en la década 1971 - 1980 fueron 25, y que se incrementaron a 78 en la última década estudiada (1991-2000).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En la cuenca del Plata, durante las últimas dos décadas del siglo XX, se desarrollaron importantes inundaciones producto de los cambios ocurridos en el sistema climático global y, como el área del Gran La Plata (partidos de Berisso, Ensenada y La Plata) no escapa a este problema, se ha tomado como caso para nuestra investigación. Se analiza la distribución temporal de las precipitaciones en la ciudad de La Plata (provincia de Buenos Aires, Argentina), para el período comprendido entre las últimas décadas del siglo XX y la actualidad. En el Gran La Plata el problema de las inundaciones es resultado de la confluencia de tres factores: las precipitaciones (sobre todo cuando se producen con gran intensidad), las napas freáticas que han aumentado su presión hacia arriba por haberse elevado y la sudestada que provoca la crecida de los ríos. El estudio se realizó considerando los valores diarios de precipitación disponibles para la localidad, brindados por estación meteorológica La Plata Aero, dependiente del Servicio Meteorológico Nacional, y los datos de inundaciones obtenidos del diario "El Día", de circulación local. La variación temporal se estudió a escala anual y mensual, detectándose cambios en monto e intensidad que, además de responder al incremento de las precipitaciones acaecido en la pradera pampeana en las últimas décadas, son una llamada de atención para la planificación de futuros emprendimientos en la ciudad y toma de decisiones en el caso de eventos hidrológicos extremos, como es el caso de las inundaciones. En los resultados de este análisis se observó que las inundaciones en la década 1971 - 1980 fueron 25, y que se incrementaron a 78 en la última década estudiada (1991-2000).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a data based statistical study on the effects of seasonal variations in the growth rates of the gastro-intestinal (GI) parasitic infection in livestock. The alluded growth rate is estimated through the variation in the number of eggs per gram (EPG) of faeces in animals. In accordance with earlier studies, our analysis too shows that rainfall is the dominant variable in determining EPG infection rates compared to other macro-parameters like temperature and humidity. Our statistical analysis clearly indicates an oscillatory dependence of EPG levels on rainfall fluctuations. Monsoon recorded the highest infection with a comparative increase of at least 2.5 times compared to the next most infected period (summer). A least square fit of the EPG versus rainfall data indicates an approach towards a super diffusive (i. e. root mean square displacement growing faster than the square root of the elapsed time as obtained for simple diffusion) infection growth pattern regime for low rainfall regimes (technically defined as zeroth level dependence) that gets remarkably augmented for large rainfall zones. Our analysis further indicates that for low fluctuations in temperature (true on the bulk data), EPG level saturates beyond a critical value of the rainfall, a threshold that is expected to indicate the onset of the nonlinear regime. The probability density functions (PDFs) of the EPG data show oscillatory behavior in the large rainfall regime (greater than 500 mm), the frequency of oscillation, once again, being determined by the ambient wetness (rainfall, and humidity). Data recorded over three pilot projects spanning three measures of rainfall and humidity bear testimony to the universality of this statistical argument. © 2013 Chattopadhyay and Bandyopadhyay.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Variation and uncertainty in estimated evaporation was determined over time and between two locations in Florida Bay, a subtropical estuary. Meteorological data were collected from September 2001 to August 2002 at Rabbit Key and Butternut Key within the Bay. Evaporation was estimated using both vapor flux and energy budget methods. The results were placed into a long-term context using 33 years of temperature and rainfall data collected in south Florida. Evaporation also was estimated from this long-term data using an empirical formula relating evaporation to clear sky solar radiation and air temperature. Evaporation estimates for the 12-mo period ranged from 144 to 175 cm yr21, depending on location and method, with an average of 163 cm yr21 (6 9%). Monthly values ranged from 9.2 to 18.5 cm, with the highest value observed in May, corresponding with the maximum in measured net radiation. Uncertainty estimates derived from measurement errors in the data were as much as 10%, and were large enough to obscure differences in evaporation between the two sites. Differences among all estimates for any month indicate the overall uncertainty in monthly evaporation, and ranged from 9% to 26%. Over a 33-yr period (1970–2002), estimated annual evaporation from Florida Bay ranged from 148 to 181 cm yr21, with an average of 166 cm yr21. Rainfall was consistently lower in Florida Bay than evaporation, with a long-term average of 106 cm yr21. Rainfall considered alone was uncorrelated with evaporation at both monthly and annual time scales; when the seasonal variation in clear sky radiation was also taken into account both net radiation and evaporation were significantly suppressed in months with high rainfall.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Taylor Slough, in Everglades National Park, has experienced an evolution of water management infrastructure since drainage activities arrived in South Florida. This has included the excavation of canals, installation of large capacity pump stations, and a variety of operational strategies focused on resolving the conflict between managing the water level for developed areas while providing water supply for Everglades National Park. This study provides a review of water management practices and the concurrent hydrologic conditions in the Taylor Slough basin and adjacent canal system from 1961 through 2010. Analyses of flow, water level and rainfall data were divided into time periods that correspond to significant changes in structural features and operational plans. In the early 1960s, Taylor Slough was disconnected from the greater Everglades system by the construction of levees upstream. As water supply for Taylor Slough became more urgent, the Slough was connected to the regional water supply system via a network of canals and pump stations to relieve over-drained conditions. The increased water supply and pump capacity succeeded in raising water level and increasing flow and hydroperiod in the marsh.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Major portion of hurricane-induced economic loss originates from damages to building structures. The damages on building structures are typically grouped into three main categories: exterior, interior, and contents damage. Although the latter two types of damages, in most cases, cause more than 50% of the total loss, little has been done to investigate the physical damage process and unveil the interdependence of interior damage parameters. Building interior and contents damages are mainly due to wind-driven rain (WDR) intrusion through building envelope defects, breaches, and other functional openings. The limitation of research works and subsequent knowledge gaps, are in most part due to the complexity of damage phenomena during hurricanes and lack of established measurement methodologies to quantify rainwater intrusion. This dissertation focuses on devising methodologies for large-scale experimental simulation of tropical cyclone WDR and measurements of rainwater intrusion to acquire benchmark test-based data for the development of hurricane-induced building interior and contents damage model. Target WDR parameters derived from tropical cyclone rainfall data were used to simulate the WDR characteristics at the Wall of Wind (WOW) facility. The proposed WDR simulation methodology presents detailed procedures for selection of type and number of nozzles formulated based on tropical cyclone WDR study. The simulated WDR was later used to experimentally investigate the mechanisms of rainwater deposition/intrusion in buildings. Test-based dataset of two rainwater intrusion parameters that quantify the distribution of direct impinging raindrops and surface runoff rainwater over building surface — rain admittance factor (RAF) and surface runoff coefficient (SRC), respectively —were developed using common shapes of low-rise buildings. The dataset was applied to a newly formulated WDR estimation model to predict the volume of rainwater ingress through envelope openings such as wall and roof deck breaches and window sill cracks. The validation of the new model using experimental data indicated reasonable estimation of rainwater ingress through envelope defects and breaches during tropical cyclones. The WDR estimation model and experimental dataset of WDR parameters developed in this dissertation work can be used to enhance the prediction capabilities of existing interior damage models such as the Florida Public Hurricane Loss Model (FPHLM).^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intense precipitation events (IPE) have been causing great social and economic losses in the affected regions. In the Amazon, these events can have serious impacts, primarily for populations living on the margins of its countless rivers, because when water levels are elevated, floods and/or inundations are generally observed. Thus, the main objective of this research is to study IPE, through Extreme Value Theory (EVT), to estimate return periods of these events and identify regions of the Brazilian Amazon where IPE have the largest values. The study was performed using daily rainfall data of the hydrometeorological network managed by the National Water Agency (Agência Nacional de Água) and the Meteorological Data Bank for Education and Research (Banco de Dados Meteorológicos para Ensino e Pesquisa) of the National Institute of Meteorology (Instituto Nacional de Meteorologia), covering the period 1983-2012. First, homogeneous rainfall regions were determined through cluster analysis, using the hierarchical agglomerative Ward method. Then synthetic series to represent the homogeneous regions were created. Next EVT, was applied in these series, through Generalized Extreme Value (GEV) and the Generalized Pareto Distribution (GPD). The goodness of fit of these distributions were evaluated by the application of the Kolmogorov-Smirnov test, which compares the cumulated empirical distributions with the theoretical ones. Finally, the composition technique was used to characterize the prevailing atmospheric patterns for the occurrence of IPE. The results suggest that the Brazilian Amazon has six pluvial homogeneous regions. It is expected more severe IPE to occur in the south and in the Amazon coast. More intense rainfall events are expected during the rainy or transitions seasons of each sub-region, with total daily precipitation of 146.1, 143.1 and 109.4 mm (GEV) and 201.6, 209.5 and 152.4 mm (GPD), at least once year, in the south, in the coast and in the northwest of the Brazilian Amazon, respectively. For the south Amazonia, the composition analysis revealed that IPE are associated with the configuration and formation of the South Atlantic Convergence Zone. Along the coast, intense precipitation events are associated with mesoscale systems, such Squall Lines. In Northwest Amazonia IPE are apparently associated with the Intertropical Convergence Zone and/or local convection.