981 resultados para Radioactive prospecting
Resumo:
In studies related to deep geological disposal of radioactive waste, it is current practice to transfer external information (e.g. from other sites, from underground rock laboratories or from natural analogues) to safety cases for specific projects. Transferable information most commonly includes parameters, investigation techniques, process understanding, conceptual models and high-level conclusions on system behaviour. Prior to transfer, the basis of transferability needs to be established. In argillaceous rocks, the most relevant common feature is the microstructure of the rocks, essentially determined by the properties of clay–minerals. Examples are shown from the Swiss and French programmes how transfer of information was handled and justified. These examples illustrate how transferability depends on the stage of development of a repository safety case and highlight the need for adequate system understanding at all sites involved to support the transfer.
Resumo:
The Opalinus Clay in Northern Switzerland has been identified as a potential host rock formation for the disposal of radioactive waste. Comprehensive understanding of gas transport processes through this low-permeability formation forms a key issue in the assessment of repository performance. Field investigations and laboratory experiments suggest an intrinsic permeability of the Opalinus Clay in the order of 10(-20) to 10(-21) m(2) and a moderate anisotropy ratio < 10. Porosity depends on clay content and burial depth; values of similar to 0.12 are reported for the region of interest. Porosimetry indicates that about 10-30 of voids can be classed as macropores, corresponding to an equivalent pore radius > 25 nm. The determined entry pressures are in the range of 0.4-10 MPa and exhibit a marked dependence on intrinsic permeability. Both in situ gas tests and gas permeameter tests on drillcores demonstrate that gas transport through the rock is accompanied by porewater displacement, suggesting that classical flow concepts of immiscible displacement in porous media can be applied when the gas entry pressure (i.e. capillary threshold pressure) is less than the minimum principal stress acting within the rock. Essentially, the pore space accessible to gas flow is restricted to the network of connected macropores, which implies a very low degree of desaturation of the rock during the gas imbibition process. At elevated gas pressures (i.e. when gas pressure approaches the level of total stress that acts on the rock body), evidence was seen for dilatancy controlled gas transport mechanisms. Further field experiments were aimed at creating extended tensile fractures with high fracture transmissivity (hydro- or gasfracs). The test results lead to the conclusion that gas fracturing can be largely ruled out as a risk for post-closure repository performance.
Resumo:
Neutron capture effects in meteorites and lunar surface samples have been successfully used in the past to study exposure histories and shielding conditions. In recent years, however, it turned out that neutron capture effects produce a nuisance for some of the short-lived radionuclide systems. The most prominent example is the 182Hf-182W system in iron meteorites, for which neutron capture effects lower the 182W/184W ratio, thereby producing too old apparent ages. Here, we present a thorough study of neutron capture effects in iron meteorites, ordinary chondrites, and carbonaceous chondrites, whereas the focus is on iron meteorites. We study in detail the effects responsible for neutron production, neutron transport, and neutron slowing down and find that neutron capture in all studied meteorite types is not, as usually expected, exclusively via thermal neutrons. In contrast, most of the neutron capture in iron meteorites is in the epithermal energy range and there is a significant contribution from epithermal neutron capture even in stony meteorites. Using sophisticated particle spectra and evaluated cross section data files for neutron capture reactions we calculate the neutron capture effects for Sm, Gd, Cd, Pd, Pt, and Os isotopes, which all can serve as neutron-dose proxies, either in stony or in iron meteorites. In addition, we model neutron capture effects in W and Ag isotopes. For W isotopes, the GCR-induced shifts perfectly correlate with Os and Pt isotope shifts, which therefore can be used as neutron-dose proxies and permit a reliable correction. We also found that GCR-induced effects for the 107Pd-107Ag system can be significant and need to be corrected, a result that is in contrast to earlier studies.
Resumo:
Gamma-spectrometric analysis was used for six sediment cores from the area occupied by metalliferous sediments in the Southeast Pacific. In five of these cores vertical distribution curves of 230Th enabled positions of equilibrium points to be determined and sediments to be dated. The ionium curve was normalized for one core. Vertical distribution of 230Th in metalliferous sediments resembles its distribution in normal ocean-floor sediments beyond the area of influence of active ridges. Sedimentation rates lay within the range 0.7-12.3 mm/ky.
Uranium and radioactive isotopes in bottom sediments and Fe-Mn nodules and crusts of seas and oceans
Resumo:
The main stages of the sedimentary cycle of uranium in modern marine basins are under consideration in the book. Annually about 18 thousand tons of dissolved and suspended uranium enters the ocean with river runoff. Depending on a type of a marine basin uranium accumulated either in sediments of deep-sea basins, or in sediments of continental shelves and slopes. In the surface layer of marine sediments hydrogenic uranium is predominantly bound with organic matter, and in ocean sediments also with iron, manganese and phosphorus. In diagenetic processes there occurs partial redistribution of uranium in sediments, as well as its concentration in iron-manganese, phosphate and carbonate nodules and biogenic phosphate detritus. Concentration of uranium in marine sediments of various types depending on their composition, as well as on forms of its entering, degree of differentiation and of sedimentation rates, on hydrochemical regime and water circulation, and on intensity of diagenetic processes.