972 resultados para Radio wave propagation
Resumo:
This work explores the design of piezoelectric transducers based on functional material gradation, here named functionally graded piezoelectric transducer (FGPT). Depending on the applications, FGPTs must achieve several goals, which are essentially related to the transducer resonance frequency, vibration modes, and excitation strength at specific resonance frequencies. Several approaches can be used to achieve these goals; however, this work focuses on finding the optimal material gradation of FGPTs by means of topology optimization. Three objective functions are proposed: (i) to obtain the FGPT optimal material gradation for maximizing specified resonance frequencies; (ii) to design piezoelectric resonators, thus, the optimal material gradation is found for achieving desirable eigenvalues and eigenmodes; and (iii) to find the optimal material distribution of FGPTs, which maximizes specified excitation strength. To track the desirable vibration mode, a mode-tracking method utilizing the `modal assurance criterion` is applied. The continuous change of piezoelectric, dielectric, and elastic properties is achieved by using the graded finite element concept. The optimization algorithm is constructed based on sequential linear programming, and the concept of continuum approximation of material distribution. To illustrate the method, 2D FGPTs are designed for each objective function. In addition, the FGPT performance is compared with the non-FGPT one.
Resumo:
The electromechanical transfer characteristics of adhesively bonded piezoelectric sensors are investigated. By the use of dynamic piezoelectricity theory, Mindlin plate theory for flexural wave propagation, and a multiple integral transform method, the frequency-response functions of piezoelectric sensors with and without backing materials are developed and the pressure-voltage transduction functions of the sensors calculated. The corresponding simulation results show that the sensitivity of the sensors is not only dependent on the sensors' inherent features, such as piezoelectric properties and geometry, but also on local characteristics of the tested structures and the admittance and impedance of the attached electrical circuit. It is also demonstrated that the simplified rigid mass sensor model can be used to analyze successfully the sensitivity of the sensor at low frequencies, but that the dynamic piezoelectric continuum model has to be used for higher frequencies, especially around the resonance frequency of the coupled sensor-structure vibration system.
Resumo:
The acousto-ultrasonic (AU) input-output characteristics for contact-type transmitting and receiving transducers coupled to composite laminated plates are considered in this paper. Combining a multiple integral transform method, an ordinary discrete layer theory for the laminates and some simplifying assumptions for the electro-mechanical transduction behaviour of the transducers, an analytical solution is developed which can deal with all the wave processes involved in the AU measurement system, i.e, wave generation, wave propagation and wave reception. The spectral response of the normal contact pressure sensed by the receiving transducer due to an arbitrary input pulse excited by the transmitting transducer is obtained. To validate the new analytical-numerical spectral technique in the low-frequency regime, the results are compared with Mindlin plate theory solutions. Based on the analytical results, numerical calculations are carried out to investigate the influence of various external parameters such as frequency content of the input pulse, transmitter/receiver spacing and transducer aperture on the output of the measurement system. The results show that the presented analytical-numerical procedure is an effective tool for understanding the input-output characteristics of the AU technique for laminated plates. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Modelos de escoamento multifásico são amplamente usados em diversas áreas de pesquisa ambiental, como leitos fluidizados, dispersão de gás em líquidos e vários outros processos que englobam mais de uma propriedade físico-química do meio. Dessa forma, um modelo multifásico foi desenvolvido e adaptado para o estudo do transporte de sedimentos de fundo devido à ação de ondas de gravidade. Neste trabalho, foi elaborado o acoplamento multifásico de um modelo euleriano não-linear de ondas do tipo Boussinesq, baseado na formulação numérica encontrada em Wei et al. (1995), com um modelo lagrangiano de partículas, fundamentado pelo princípio Newtoniano do movimento com o esquema de colisões do tipo esferas rígidas. O modelo de ondas foi testado quanto à sua fonte geradora, representada por uma função gaussiana, pá-pistão e pá-batedor, e quanto à sua interação com a profundidade, através da não-linearidade e de propriedades dispersivas. Nos testes realizados da fonte geradora, foi observado que a fonte gaussiana, conforme Wei et al. (1999), apresentou melhor consistência e estabilidade na geração das ondas, quando comparada à teoria linear para um kh . A não-linearidade do modelo de ondas de 2ª ordem para a dispersão apresentou resultados satisfatórios quando confrontados com o experimento de ondas sobre um obstáculo trapezoidal, onde a deformação da onda sobre a estrutura submersa está em concordância com os dados experimentais encontrados na literatura. A partir daí, o modelo granular também foi testado em dois experimentos. O primeiro simula uma quebra de barragem em um tanque contendo água e o segundo, a quebra de barragem é simulada com um obstáculo rígido adicionado ao centro do tanque. Nesses experimentos, o algoritmo de colisão foi eficaz no tratamento da interação entre partícula-partícula e partícula-parede, permitindo a evidência de processos físicos que são complicados de serem simulados por modelos de malhas regulares. Para o acoplamento do modelo de ondas e de sedimentos, o algoritmo foi testado com base de dados da literatura quanto à morfologia do leito. Os resultados foram confrontados com dados analíticos e de modelos numéricos, e se mostraram satisfatórios com relação aos pontos de erosão, de sedimentação e na alteração da forma da barra arenosa
Resumo:
The 27 December 1722 Algarve earthquake destroyed a large area in southern Portugal generating a local tsunami that inundated the shallow areas of Tavira. It is unclear whether its source was located onshore or offshore and, in any case, what was the tectonic source responsible for the event. We analyze available historical information concerning macroseismicity and the tsunami to discuss the most probable location of the source. We also review available seismotectonic knowledge of the offshore region close to the probable epicenter, selecting a set of four candidate sources. We simulate tsunamis produced by these candidate sources assuming that the sea bottom displacement is caused by a compressive dislocation over a rectangular fault, as given by the half-space homogeneous elastic approach, and we use numerical modeling to study wave propagation and run-up. We conclude that the 27 December 1722 Tavira earthquake and tsunami was probably generated offshore, close to 37 degrees 01'N, 7 degrees 49'W.
Resumo:
O risco associado a um navio em manobra pode ser avaliado pela probabilidade do movimento vertical de um ponto do navio ultrapassar um determinado limiar pré-definido. Essa excedência pode originar danos tanto no próprio navio como nas estruturas portuárias envolventes. Este trabalho surge no seguimento de um estudo efectuado no Laboratório Nacional de Engenharia Civil (LNEC), no qual foi desenvolvido um conjunto de ferramentas de avaliação da função resposta do navio quando sujeito à agitação marítima e, partindo dessas ferramentas, foi obtido um procedimento para determinação do espectro dos movimentos verticais de um ponto de um navio parado sujeito àquele estado de agitação (Rodrigues, 2010). No presente estudo, estendeu-se esse procedimento de modo a avaliar a influência da velocidade de avanço do navio no espectro dos movimentos verticais do mesmo. O percurso de entrada do “N/M Fernão Gomes” no porto da Praia da Vitória foi o caso de estudo considerado. A agitação marítima incidente no navio cobriu o período de Janeiro de 2009 a Dezembro de 2010 e foi obtida com base no modelo previsão de escala regional (WAVEWATCH III) e posteriormente transferida para o interior do porto com o recurso a modelos numéricos de propagação de ondas (SWAN e DREAMS). Foi também assumido que a altura do movimento vertical do navio segue uma distribuição de Rayleigh, a qual possibilita a determinação da altura significativa desse movimento vertical, bem como a implementação de um procedimento para determinar a probabilidade de a altura do movimento vertical do navio não exceder um limiar pré-definido e consequentemente mostrar, através da análise dos resultados, a influência da velocidade de avanço do navio. Da análise dos resultados concluiu-se que a velocidade tem uma influência significativa nos resultados. No final avaliou-se a contribuição dos resultados anteriormente determinados, para a análise do risco associado aos movimentos verticais do navio quando em manobra no porto em estudo.
Resumo:
We propose a low complexity technique to generate amplitude correlated time-series with Nakagami-m distribution and phase correlated Gaussian-distributed time-series, which is useful for the simulation of ionospheric scintillation effects in GNSS signals. To generate a complex scintillation process, the technique requires solely the knowledge of parameters Sa (scintillation index) and σφ (phase standard deviation) besides the definition of models for the amplitude and phase power spectra. The concatenation of two nonlinear memoryless transformations is used to produce a Nakagami-distributed amplitude signal from a Gaussian autoregressive process.
Resumo:
We propose a low complexity technique to generate amplitude correlated time-series with Nakagami-m distribution and phase correlated Gaussian-distributed time-series, which is useful in the simulation of ionospheric scintillation effects during the transmission of GNSS signals. The method requires only the knowledge of parameters S4 (scintillation index) and σΦ (phase standard deviation) besides the definition of models for the amplitude and phase power spectra. The Zhang algorithm is used to produce Nakagami-distributed signals from a set of Gaussian autoregressive processes.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de especialização em Hidráulica
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
The study of wave propagation at sonic frequency in soil leads to elasticity parameter determination. These parameters are compatible to those measured simultaneously by static loading. The acquisition of in situ elasticity parameter combined with laboratory description of the elastoplastic behaviour can lead to in situ elastoplastic curves. - L'étude de la propagation des ondes acoustiques permet la détermination des paramètres d'élasticité dans les sols. Ces paramètres sont cohérents avec des mesures statiques simultanées. L'acquisition des paramètres d'élasticité in situ associée à une description du comportement élasto-plastique mesuré en laboratoire permet d'obtenir des courbes d'élastoplasticité in situ.
Resumo:
SUMMARYIntercellular communication is achieved at specialized regions of the plasma membrane by gap junctions. The proteins constituting the gap junctions are called connexins and are encoded by a family of genes highly conserved during evolution. In adult mouse, four connexins (Cxs) are known to be expressed in the vasculature: Cx37, Cx40, Cx43 and Cx45. Several recent studies have provided evidences that vascular connexins expression and blood pressure regulation are closely linked, suggesting a role for connexins in the control of blood pressure. However, the precise function that each vascular connexin plays under physiological and pathophysiological conditions is still not elucidated. In this context, this work was dedicated to evaluate the contribution of each of the four vascular connexins in the control of the vascular function and in the blood pressure regulation.In the present work, we first demonstrated that vascular connexins are differently regulated by hypertension in the mouse aorta. We also observed that endothelial connexins play a regulatory role on eNOS expression levels and function in the aorta, therefore in the control of vascular tone. Then, we demonstrated that Cx40 plays a pivotal role in the kidney by regulating the renal levels of COX-2 and nNOS, two key enzymes of the macula densa known to participate in the control of renin secreting cells. We also found that Cx43 forms the functional gap junction involved in intercellular Ca2+ wave propagation between vascular smooth muscle cells. Finally, we have started to generate transgenic mice expressing specifically Cx40 in the endothelium to investigate the involvement of Cx40 in the vasomotor tone, or in the renin secreting cells to evaluate the role of Cx40 in the control of renin secretion.In conclusion, this work has allowed us to identify new roles for connexins in the vasculature. Our results suggest that vascular connexins could be interesting targets for new therapies caring hypertension and vascular diseases.
Resumo:
The purpose of this research was to summarize existing nondestructive test methods that have the potential to be used to detect materials-related distress (MRD) in concrete pavements. The various nondestructive test methods were then subjected to selection criteria that helped to reduce the size of the list so that specific techniques could be investigated in more detail. The main test methods that were determined to be applicable to this study included two stress-wave propagation techniques (impact-echo and spectral analysis of surface waves techniques), infrared thermography, ground penetrating radar (GPR), and visual inspection. The GPR technique was selected for a preliminary round of “proof of concept” trials. GPR surveys were carried out over a variety of portland cement concrete pavements for this study using two different systems. One of the systems was a state-of-the-art GPR system that allowed data to be collected at highway speeds. The other system was a less sophisticated system that was commercially available. Surveys conducted with both sets of equipment have produced test results capable of identifying subsurface distress in two of the three sites that exhibited internal cracking due to MRD. Both systems failed to detect distress in a single pavement that exhibited extensive cracking. Both systems correctly indicated that the control pavement exhibited negligible evidence of distress. The initial positive results presented here indicate that a more thorough study (incorporating refinements to the system, data collection, and analysis) is needed. Improvements in the results will be dependent upon defining the optimum number and arrangement of GPR antennas to detect the most common problems in Iowa pavements. In addition, refining highfrequency antenna response characteristics will be a crucial step toward providing an optimum GPR system for detecting materialsrelated distress.
Resumo:
The calculation of elasticity parameters by sonic and ultra sonic wave propagation in saturated soils using Biot's theory needs the following variables : forpiation density and porosity (p, ø), compressional and shear wave velocities (Vp, Vs), fluid density, viscosity and compressibility (Pfi Ilfi Ki), matrix density and compressibility (p" K), The first four parameters can be determined in situ using logging probes. Because fluid and matrix characteristics are not modified during core extraction, they can be obtained through laboratory measurements. All parameters necessitate precise calibrations in various environments and for specific range of values encountered in soils. The slim diameter of boreholes in shallow geophysics and the high cost of petroleum equipment demand the use of specific probes, which usually only give qualitative results. The measurement 'of density is done with a gamma-gamma probe and the measurement of hydrogen index, in relation to porosity, by a neutron probe. The first step of this work has been carried out in synthetic formations in the laboratory using homogeneous media of known density and porosity. To establish borehole corrections different casings have been used. Finally a comparison between laboratory and in situ data in cored holes of known geometry and casing has been performed.
Resumo:
We have modeled numerically the seismic response of a poroelastic inclusion with properties applicable to an oil reservoir that interacts with an ambient wavefield. The model includes wave-induced fluid flow caused by pressure differences between mesoscopic-scale (i.e., in the order of centimeters to meters) heterogeneities. We used a viscoelastic approximation on the macroscopic scale to implement the attenuation and dispersion resulting from this mesoscopic-scale theory in numerical simulations of wave propagation on the kilometer scale. This upscaling method includes finite-element modeling of wave-induced fluid flow to determine effective seismic properties of the poroelastic media, such as attenuation of P- and S-waves. The fitted, equivalent, viscoelastic behavior is implemented in finite-difference wave propagation simulations. With this two-stage process, we model numerically the quasi-poroelastic wave-propagation on the kilometer scale and study the impact of fluid properties and fluid saturation on the modeled seismic amplitudes. In particular, we addressed the question of whether poroelastic effects within an oil reservoir may be a plausible explanation for low-frequency ambient wavefield modifications observed at oil fields in recent years. Our results indicate that ambient wavefield modification is expected to occur for oil reservoirs exhibiting high attenuation. Whether or not such modifications can be detected in surface recordings, however, will depend on acquisition design and noise mitigation processing as well as site-specific conditions, such as the geologic complexity of the subsurface, the nature of the ambient wavefield, and the amount of surface noise.