951 resultados para RING RESONATORS
Resumo:
Field capacity (FC) is a parameter widely used in applied soil science. However, its in situ method of determination may be difficult to apply, generally because of the need of large supplies of water at the test sites. Ottoni Filho et al. (2014) proposed a standardized procedure for field determination of FC and showed that such in situ FC can be estimated by a linear pedotransfer function (PTF) based on volumetric soil water content at the matric potential of -6 kPa [θ(6)] for the same soils used in the present study. The objective of this study was to use soil moisture data below a double ring infiltrometer measured 48 h after the end of the infiltration test in order to develop PTFs for standard in situ FC. We found that such ring FC data were an average of 0.03 m³ m- 3 greater than standard FC values. The linear PTF that was developed for the ring FC data based only on θ(6) was nearly as accurate as the equivalent PTF reported by Ottoni Filho et al. (2014), which was developed for the standard FC data. The root mean squared residues of FC determined from both PTFs were about 0.02 m³ m- 3. The proposed method has the advantage of estimating the soil in situ FC using the water applied in the infiltration test.
Resumo:
The vacuum Einstein equations in five dimensions are shown to admit a solution describing a stationary asymptotically flat spacetime regular on and outside an event horizon of topology S1S2. It describes a rotating black ring. This is the first example of a stationary asymptotically flat vacuum solution with an event horizon of nonspherical topology. The existence of this solution implies that the uniqueness theorems valid in four dimensions do not have simple five-dimensional generalizations. It is suggested that increasing the spin of a spherical black hole beyond a critical value results in a transition to a black ring, which can have an arbitrarily large angular momentum for a given mass.
Resumo:
A new supersymmetric black hole solution of five-dimensional supergravity is presented. It has an event horizon of topology S1 X S2. This is the first example of a supersymmetric, asymptotically flat black hole of nonspherical topology. The solution is uniquely specified by its electric charge and two independent angular momenta. These conserved charges can be arbitrarily close, but not exactly equal, to those of a supersymmetric black hole of spherical topology.
Resumo:
A surprising new seven-parameter supersymmetric black ring solution of five-dimensional supergravity has recently been discovered. In this paper, M theory is used to give an exact microscopic accounting of its entropy.
Resumo:
Data sheet produced by the Iowa Department of Natural Resources is about different times of animals, insects, snakes, birds, fish, butterflies, etc. that can be found in Iowa.
Resumo:
INTRODUCTION: Currently, there is no reliable method to differentiate acute from chronic carotid occlusion. We propose a novel CTA-based method to differentiate acute from chronic carotid occlusions that could potentially aid clinical management of patients. METHODS: We examined 72 patients with 89 spontaneously occluded extracranial internal carotids with CT angiography (CTA). All occlusions were confirmed by another imaging modality and classified as acute (imaging <1 week of presumed occlusion) orchronic (imaging >4 weeks), based on circumstantial clinical and radiological evidence. A neuroradiologist and a neurologist blinded to clinical information determined the site of occlusion on axial sections of CTA. They also looked for (a) hypodensity in the carotid artery (thrombus), (b) contrast within the carotid wall (vasa vasorum), (c) the site of the occluded carotid, and (d) the "carotid ring sign" (defined as presence of a and/or b). RESULTS: Of 89 occluded carotids, 24 were excluded because of insufficient circumstantial evidence to determine timing of occlusion, 4 because of insufficient image quality, and 3 because of subacute timing of occlusion. Among the remaining 45 acute and 13 chronic occlusions, inter-rater agreement (kappa) for the site of proximal occlusion was 0.88, 0.45 for distal occlusion, 0.78 for luminal hypodensity, 0.82 for wall contrast, and 0.90 for carotid ring sign. The carotid ring sign had 88.9% sensitivity, 69.2% specificity, and 84.5% accuracy to diagnose acute occlusion. CONCLUSION: The carotid ring sign helps to differentiate acute from chronic carotid occlusion. If further confirmed, this information may be helpful in studying ischemic symptoms and selecting treatment strategies in patients with carotid occlusions.
Resumo:
Abstract
Resumo:
A human in vivo toxicokinetic model was built to allow a better understanding of the toxicokinetics of folpet fungicide and its key ring biomarkers of exposure: phthalimide (PI), phthalamic acid (PAA) and phthalic acid (PA). Both PI and the sum of ring metabolites, expressed as PA equivalents (PAeq), may be used as biomarkers of exposure. The conceptual representation of the model was based on the analysis of the time course of these biomarkers in volunteers orally and dermally exposed to folpet. In the model, compartments were also used to represent the body burden of folpet and experimentally relevant PI, PAA and PA ring metabolites in blood and in key tissues as well as in excreta, hence urinary and feces. The time evolution of these biomarkers in each compartment of the model was then mathematically described by a system of coupled differential equations. The mathematical parameters of the model were then determined from best fits to the time courses of PI and PAeq in blood and urine of five volunteers administered orally 1 mg kg(-1) and dermally 10 mg kg(-1) of folpet. In the case of oral administration, the mean elimination half-life of PI from blood (through feces, urine or metabolism) was found to be 39.9 h as compared with 28.0 h for PAeq. In the case of a dermal application, mean elimination half-life of PI and PAeq was estimated to be 34.3 and 29.3 h, respectively. The average final fractions of administered dose recovered in urine as PI over the 0-96 h period were 0.030 and 0.002%, for oral and dermal exposure, respectively. Corresponding values for PAeq were 24.5 and 1.83%, respectively. Finally, the average clearance rate of PI from blood calculated from the oral and dermal data was 0.09 ± 0.03 and 0.13 ± 0.05 ml h(-1) while the volume of distribution was 4.30 ± 1.12 and 6.05 ± 2.22 l, respectively. It was not possible to obtain the corresponding values from PAeq data owing to the lack of blood time course data.
Resumo:
The RAD52 epistasis group was identified in yeast as a group of genes required to repair DNA damaged by ionizing radiation [1]. Genetic evidence indicates that Rad52 functions in Rad51-dependent and Rad51-independent recombination pathways [2] [3] [4]. Consistent with this, purified yeast and human Rad52 proteins have been shown to promote single-strand DNA annealing [5] [6] [7] and to stimulate Rad51-mediated homologous pairing [8] [9] [10] [11]. Electron microscopic examinations of the yeast [12] and human [13] Rad52 proteins have revealed their assembly into ring-like structures in vitro. Using both conventional transmission electron microscopy and scanning transmission electron microscopy (STEM), we found that the human Rad52 protein forms heptameric rings. A three-dimensional (3D) reconstruction revealed that the heptamer has a large central channel. Like the hexameric helicases such as Escherichia coli DnaB [14] [15], bacteriophage T7 gp4b [16] [17], simian virus 40 (SV40) large T antigen [18] and papilloma virus E1 [19], the Rad52 rings show a distinctly chiral arrangement of subunits. Thus, the structures formed by the hexameric helicases may be a more general property of other proteins involved in DNA metabolism, including those, such as Rad52, that do not bind and hydrolyze ATP.
Resumo:
In 2004, a 56-year-old woman was diagnosed with Stage IA follicular lymphoma in a cervical lymph node biopsy. The patient experienced total remission after local radiation therapy. In 2009, a control computed tomography scan evidenced a pelvic mass, prompting total hysterectomy. The latter harbored a 4.8-cm intramural uterine tumor corresponding to a mostly diffuse and focally nodular proliferation of medium to large cells, with extensive, periodic acid-Schiff negative, signet ring cell changes, and a pan-keratin negative, CD20+, CD10+, Bcl2+, Bcl6+ immunophenotype. Molecular genetic studies showed the same clonal IGH gene rearrangement in the lymph node and the uterus, establishing the uterine tumor as a relapse of the preceding follicular lymphoma, although no signet ring cells were evidenced at presentation. Uterine localization of lymphomas is rare, and lymphomas with signet ring cell features are uncommon. This exceptional case exemplifies a diagnostically challenging situation and expands the differential diagnosis of uterine neoplasms displaying signet ring cell morphology.
Resumo:
La collaboration CLIC (Compact LInear Collider, collisionneur linéaire compact) étudie la possibilité de réaliser un collisionneur électron-positon linéaire à haute énergie (3 TeV dans le centre de masse) et haute luminosité (1034 cm-2s-1), pour la recherche en physique des particules. Le projet CLIC se fonde sur l'utilisation de cavités accélératrices à haute fréquence (30 GHz). La puissance nécessaire à ces cavités est fournie par un faisceau d'électrons de basse énergie et de haute intensité, appelé faisceau de puissance, circulant parallèlement à l'accélérateur linéaire principal (procédé appelé « Accélération à Double Faisceau »). Dans ce schéma, un des principaux défis est la réalisation du faisceau de puissance, qui est d'abord généré dans un complexe accélérateur à basse fréquence, puis transformé pour obtenir une structure temporelle à haute fréquence nécessaire à l'alimentation des cavités accélératrices de l'accélérateur linéaire principal. La structure temporelle à haute fréquence des paquets d'électrons est obtenue par le procédé de multiplication de fréquence, dont la manipulation principale consiste à faire circuler le faisceau d'électrons dans un anneau isochrone en utilisant des déflecteurs radio-fréquence (déflecteurs RF) pour injecter et combiner les paquets d'électrons. Cependant, ce type de manipulation n'a jamais été réalisé auparavant et la première phase de la troisième installation de test pour CLIC (CLIC Test Facility 3 ou CTF3) a pour but la démonstration à faible charge du procédé de multiplication de fréquence par injection RF dans un anneau isochrone. Cette expérience, qui a été réalisée avec succès au CERN au cours de l'année 2002 en utilisant une version modifiée du pré-injecteur du grand collisionneur électron-positon LEP (Large Electron Positron), est le sujet central de ce rapport. L'expérience de combinaison des paquets d'électrons consiste à accélérer cinq impulsions dont les paquets d'électrons sont espacés de 10 cm, puis à les combiner dans un anneau isochrone pour obtenir une seule impulsion dont les paquets d'électrons sont espacés de 2 cm, multipliant ainsi la fréquence des paquets d'électrons, ainsi que la charge par impulsion, par cinq. Cette combinaison est réalisée au moyen de structures RF résonnantes sur un mode déflecteur, qui créent dans l'anneau une déformation locale et dépendante du temps de l'orbite du faisceau. Ce mécanisme impose plusieurs contraintes de dynamique de faisceau comme l'isochronicité, ainsi que des tolérances spécifiques sur les paquets d'électrons, qui sont définies dans ce rapport. Les études pour la conception de la Phase Préliminaire du CTF3 sont détaillées, en particulier le nouveau procédé d'injection avec les déflecteurs RF. Les tests de haute puissance réalisés sur ces cavités déflectrices avant leur installation dans l'anneau sont également décrits. L'activité de mise en fonctionnement de l'expérience est présentée en comparant les mesures faites avec le faisceau aux simulations et calculs théoriques. Finalement, les expériences de multiplication de fréquence des paquets d'électrons sont décrites et analysées. On montre qu'une très bonne efficacité de combinaison est possible après optimisation des paramètres de l'injection et des déflecteurs RF. En plus de l'expérience acquise sur l'utilisation de ces déflecteurs, des conclusions importantes pour les futures activités CTF3 et CLIC sont tirées de cette première démonstration de la multiplication de fréquence des paquets d'électrons par injection RF dans un anneau isochrone.<br/><br/>The Compact LInear Collider (CLIC) collaboration studies the possibility of building a multi-TeV (3 TeV centre-of-mass), high-luminosity (1034 cm-2s-1) electron-positron collider for particle physics. The CLIC scheme is based on high-frequency (30 GHz) linear accelerators powered by a low-energy, high-intensity drive beam running parallel to the main linear accelerators (Two-Beam Acceleration concept). One of the main challenges to realize this scheme is to generate the drive beam in a low-frequency accelerator and to achieve the required high-frequency bunch structure needed for the final acceleration. In order to provide bunch frequency multiplication, the main manipulation consists in sending the beam through an isochronous combiner ring using radio-frequency (RF) deflectors to inject and combine electron bunches. However, such a scheme has never been used before, and the first stage of the CLIC Test Facility 3 (CTF3) project aims at a low-charge demonstration of the bunch frequency multiplication by RF injection into an isochronous ring. This proof-of-principle experiment, which was successfully performed at CERN in 2002 using a modified version of the LEP (Large Electron Positron) pre-injector complex, is the central subject of this report. The bunch combination experiment consists in accelerating in a linear accelerator five pulses in which the electron bunches are spaced by 10 cm, and combining them in an isochronous ring to obtain one pulse in which the electron bunches are spaced by 2 cm, thus achieving a bunch frequency multiplication of a factor five, and increasing the charge per pulse by a factor five. The combination is done by means of RF deflecting cavities that create a time-dependent bump inside the ring, thus allowing the interleaving of the bunches of the five pulses. This process imposes several beam dynamics constraints, such as isochronicity, and specific tolerances on the electron bunches that are defined in this report. The design studies of the CTF3 Preliminary Phase are detailed, with emphasis on the novel injection process using RF deflectors. The high power tests performed on the RF deflectors prior to their installation in the ring are also reported. The commissioning activity is presented by comparing beam measurements to model simulations and theoretical expectations. Eventually, the bunch frequency multiplication experiments are described and analysed. It is shown that the process of bunch frequency multiplication is feasible with a very good efficiency after a careful optimisation of the injection and RF deflector parameters. In addition to the experience acquired in the operation of these RF deflectors, important conclusions for future CTF3 and CLIC activities are drawn from this first demonstration of the bunch frequency multiplication by RF injection into an isochronous ring.<br/><br/>La collaboration CLIC (Compact LInear Collider, collisionneur linéaire compact) étudie la possibilité de réaliser un collisionneur électron-positon linéaire à haute énergie (3 TeV) pour la recherche en physique des particules. Le projet CLIC se fonde sur l'utilisation de cavités accélératrices à haute fréquence (30 GHz). La puissance nécessaire à ces cavités est fournie par un faisceau d'électrons de basse énergie et de haut courant, appelé faisceau de puissance, circulant parallèlement à l'accélérateur linéaire principal (procédé appelé « Accélération à Double Faisceau »). Dans ce schéma, un des principaux défis est la réalisation du faisceau de puissance, qui est d'abord généré dans un complexe accélérateur à basse fréquence, puis transformé pour obtenir une structure temporelle à haute fréquence nécessaire à l'alimentation des cavités accélératrices de l'accélérateur linéaire principal. La structure temporelle à haute fréquence des paquets d'électrons est obtenue par le procédé de multiplication de fréquence, dont la manipulation principale consiste à faire circuler le faisceau d'électrons dans un anneau isochrone en utilisant des déflecteurs radio-fréquence (déflecteurs RF) pour injecter et combiner les paquets d'électrons. Cependant, ce type de manipulation n'a jamais été réalisé auparavant et la première phase de la troisième installation de test pour CLIC (CLIC Test Facility 3 ou CTF3) a pour but la démonstration à faible charge du procédé de multiplication de fréquence par injection RF dans un anneau isochrone. L'expérience consiste à accélérer cinq impulsions, puis à les combiner dans un anneau isochrone pour obtenir une seule impulsion dans laquelle la fréquence des paquets d'électrons et le courant sont multipliés par cinq. Cette combinaison est réalisée au moyen de structures déflectrices RF qui créent dans l'anneau une déformation locale et dépendante du temps de la trajectoire du faisceau. Les résultats de cette expérience, qui a été réalisée avec succès au CERN au cours de l?année 2002 en utilisant une version modifiée du pré-injecteur du grand collisionneur électron-positon LEP (Large Electron Positon), sont présentés en détail.