945 resultados para RF Magnetron Sputtering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main challenges in the deposition of cathode materials in thin film form are the reproduction of stoichiometry close to the bulk material and attaining higher rates of deposition and excellent crystallinity at comparatively lower annealing temperatures. There are several methods available to develop stoichiometric thin film cathode materials including pulsed laser deposition; plasma enhanced chemical vapor deposition, electron beam evaporation, electrostatic spray deposition and RF magnetron sputtering. Among them the most versatile method is the sputtering technique, owing to its suitability for micro-fabricating the thin film batteries directly on chips in any shape or size, and on flexible substrates, with good capacity and cycle life. The main drawback of the conventional sputtering technique using RF frequency of 13.56MHz is its lower rate of deposition, compared to other deposition techniques A typical cathode layer for a thin film battery requires a thickness around one micron. To deposit such thick layers using convention RF sputtering, longer time of deposition is required, since the deposition rate is very low, which is typically 10-20 Å/min. This makes the conventional RF sputtering technique a less viable option for mass production in an economical way. There exists a host of theoretical and experimental evidences and results that higher excitation frequency can be efficiently used to deposit good quality films at higher deposition rates with glow discharge plasma. The effect of frequencies higher than the conventional one (13.56MHz) on the RF magnetron sputtering process has not been subjected to detailed investigations. Attempts have been made in the present work, to sputter deposit spinel oxide cathode films, using high frequency RF excitation source. Most importantly, the major challenge faced by the thin film battery based on the LiMn2O4 cathode material is the poor capacity retention during charge discharge cycling. The major causes for the capacity fading reported in LiMn2O4cathode materials are due to, Jahn-Teller distortion, Mn2+ dissolution into the electrolyte and oxygen loss in cathode material during cycling. The work discussed in this thesis is an attempt on overcoming the above said challenges and developing a high capacity thin film cathode material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of rf-power in the range from 100 to 200 W on the electrochemical properties of TiN coatings deposited on 316L stainless steel was investigated by using various electrochemical techniques in a 3.5-wt\% NaCl solution. Surface analyses were also conducted to analyze the coating characteristics. X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses confirmed that increasing the rf-power led to a preferred orientation of the TiN(200) microstructure and decreased the surface roughness. The potentiodynamic test results confirmed the passive behavior of all of the specimens with low passive current densities and demonstrated that the effective pitting resistance of the TiN coatings increased with increasing rf-power. The electrochemical impedance spectroscopy (EIS) tests showed that the TiN films deposited with high rf-power had excellent corrosion resistance during an immersion time of 720 h due to their high total resistance and low porosity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a novel method to prepare graphene quantum dots (GQDs) directly from graphite. A composite film of GQDs and ZnO was first prepared using the composite target of graphite and ZnO via magnetron sputtering, followed with hydrochloric acid treatment and dialysis. Morphology and optical properties of the GQDs were investigated using a number of techniques. The as-prepared GQDs are 4-12 nm in size and 1-2 nm in thickness. They also exhibited typical excitation-dependent properties as expected in carbon-based quantum dots. To demonstrate the potential applications of GQDs in electronic devices, pure ZnO and GQD-ZnO thin-film transistors (TFTs) using ZrOx dielectric were fabricated and examined. The ZnO TFT incorporating the GQDs exhibited enhanced performance: an on/off current ratio of 1.7 × 107, a field-effect mobility of 17.7 cm2/Vs, a subthreshold swing voltage of 90 mV/decade. This paper provides an efficient, reproducible and eco-friendly approach for the preparation of monodisperse GQDs directly from graphite. Our results suggest that GQDs fabricated using magnetron sputtering method may envision promising applications in electronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microalloyed steels constitute a specific class of steel with low amount of carbon and microalloying elements such as Vanadium (V), Niobium (Nb) and Titanium (Ti). The development and application of microalloyed steels and steels in general are limited to the handling of powders with particles of submicron or nanometer dimensions. Therefore, this work presents an alternative in order to construction of microalloyed steels utilizing the deposition by magnetron sputtering technique as a microalloying element addiction in which Ti nanoparticles are dispersed in an iron matrix. The advantage of that technique in relation to the conventional metallurgical processes is the possibility of uniformly disperse the microalloying elements in the iron matrix. It was carried out deposition of Ti onto Fe powder in high CH4, H2, Ar plasma atmosphere, with two deposition times. After the deposition, the iron powder with nanoparticles of Ti dispersed distributed, were compacted and sintered at 1120 ° C in resistive furnace. Characterization techniques utilized in the samples of powder before and after deposition of Ti were Granulometry, Scanning Electron Microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (DRX). In the case of sintered samples, it was carried out characterization by SEM and Vickers Microhardness assays. The results show which the deposition technique by magnetron sputtering is practicable in the dispersion of particles in iron matrix. The EDX microanalysis detected higher percentages of Ti when the deposition were carried out with the inert gas and when the deposition process was carried out with reactive gas. The presence of titanium in iron matrix was also evidenced by the results of X-ray diffraction peaks that showed shifts in the network matrix. Given these results it can be said that the technique of magnetron sputtering deposition is feasible in the dispersion of nanoparticles of iron matrix in Ti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have focused on the optical absorption edge of nanocrystalline Ga(1-x)Mn(x)N (0.00 <= x <= 0.18) films deposited by reactive RF magnetron sputtering. The films obtained are nanocrystalline with grain sizes of about 25 nm, having wurtzite structure and strong orientation texture in the c-axis direction. The optical characterizations of the absorption edges were obtained in the 190-2600 nm spectral range. The increase of the Mn content causes an increase of the absorption coefficient which can be clearly noticed at low energies, and a quasi-linear decrease of the optical gap. Broad absorption bands observed around similar to 1.3 and similar to 2.2 eV were associated with transitions between the Mn acceptor level and the valence and conduction bands, respectively. The observed changes in the optical properties due to the Mn incorporation observed in these nanocrystalline films are similar to those reported for ferromagnetic GaMnN single-crystal films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural and vibrational properties of nanocrystalline Ga1-xMnxN films deposited by reactive magnetron sputtering were analyzed in a wide composition range (0 < x < 0.18). The films were structurally characterized using x-ray diffraction with Rietveld refinement. The corresponding vibrational properties were investigated using micro-Raman and Fourier transform infrared spectroscopies. The films present a high crystallized fraction, crystallites having wurtzite structure, and high orientation texture with the c axis oriented perpendicular to the substrate surface. Rietveld analysis indicates that Mn atoms are incorporated substitutionally into Ga positions and show that the ionic character of cation-N bonds along the c axis is favored by the Mn incorporation. No evidence for Mn segregation or Mn rich phases was found in the composition range analyzed. Micro-Raman scattering spectra and infrared absorption experiments showed progressive changes with the increase of x and monotonic shifts of the GaN TO and LO peaks to lower frequencies. The structural and vibrational analyses are compared and the influence of Mn on the static and dynamic properties of the lattice is analyzed. (C) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of nanocrystalline Ga1-zMnxN (0.00 <= x <= 0.18) films grown by reactive RF-magnetron sputtering is focused here for the first time. The films were grown in a N-2 atmosphere by co-sputtering technique using a Ga target covered with small pieces of Mn onto c-GaAs (10 0), c-Si (10 0) and amorphous SiO2 substrates maintained at 500 K. Scanning electron microscopy and X-ray diffraction (XRD) experiments did not show any evidence for Mn segregation within the studied composition range. EDX measurements show that the Mn concentration is increased monotonically with the fraction of the target area covered by Mn. The XRD characterization show that the films are nanocrystalline, the crystallites having mean grain sizes in the 15-19 nm range and wurtzite structure with preferential growth orientation along the c-axis direction. The lattice parameters of alpha-GaN (a and c) increase practically linearly with the increase of Mn incorporation. The changes in the structural properties of our films due to the Mn incorporation are similar to those that occur in ferromagnetic GaMnN single-crystal films. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)