940 resultados para REGRESSION ANALYSIS
Resumo:
The paper describes the development and application of a multiple linear regression model to identify how the key elements of waste and recycling infrastructure, namely container capacity and frequency of collection affect the yield from municipal kerbside recycling programmes. The overall aim of the research was to gain an understanding of the factors affecting the yield from municipal kerbside recycling programmes in Scotland. The study isolates the principal kerbside collection service offered by 32 councils across Scotland, eliminating those recycling programmes associated with flatted properties or multi occupancies. The results of a regression analysis model has identified three principal factors which explain 80% of the variability in the average yield of the principal dry recyclate services: weekly residual waste capacity, number of materials collected and the weekly recycling capacity. The use of the model has been evaluated and recommendations made on ongoing methodological development and the use of the results in informing the design of kerbside recycling programmes. The authors hope that the research can provide insights for the ongoing development of methods to optimise the design and operation of kerbside recycling programmes.
Resumo:
Type 1 diabetes (T1D) increases risk of the development of microvascular complications and cardiovascular disease (CVD). Dyslipidemia is a common risk factor in the pathogenesis of both CVD and diabetic nephropathy (DN), with CVD identified as the primary cause of death in patients with DN. In light of this commonality, we assessed single nucleotide polymorphisms (SNPs) in thirty-seven key genetic loci previously associated with dyslipidemia in a T1D cohort using a casecontrol design. SNPs (n = 53) were genotyped using Sequenom in 1467 individuals with T1D (718 cases with proteinuric nephropathy and 749 controls without nephropathy i.e. normal albumin excretion). Cases and controls were white and recruited from the UK and Ireland. Association analyses were performed using PLINK to compare allele frequencies in cases and controls. In a sensitivity analysis, samples from control individuals with reduced renal function (estimated glomerular filtration rate,60 ml/min/1.73 m2) were excluded. Correction for multiple testing was performed by permutation testing. A total of 1394 samples passed quality control filters. Following regression analysis adjusted by collection center, gender, duration of diabetes, and average HbA1c, two SNPs were significantly associated with DN. rs4420638 in the APOC1 region (odds ratio [OR] = 1.51; confidence intervals [CI]: 1.19–1.91; P = 0.001) and rs1532624 in CETP (OR = 0.82; CI: 0.69–0.99; P = 0.034); rs4420638 was also significantly associated in a sensitivity analysis (P = 0.016) together with rs7679 (P = 0.027). However, no association was significant following correction for multiple testing. Subgroup analysis of end-stage renal disease status failed to reveal any association. Our results suggest common variants associated with dyslipidemia are not strongly associated with DN in T1D among white individuals. Our findings, cannot entirely exclude these key genes which are central to the process of dyslipidemia, from involvement in DN pathogenesis as our study had limited power to detect variants of small effect size. Analysis in larger independent cohorts is required.
Resumo:
INTRODUCTION: Acute respiratory distress syndrome (ARDS) is a common clinical syndrome with high mortality and long-term morbidity. To date there is no effective pharmacological therapy. Aspirin therapy has recently been shown to reduce the risk of developing ARDS, but the effect of aspirin on established ARDS is unknown.
METHODS: In a single large regional medical and surgical ICU between December 2010 and July 2012, all patients with ARDS were prospectively identified and demographic, clinical, and laboratory variables were recorded retrospectively. Aspirin usage, both pre-hospital and during intensive care unit (ICU) stay, was included. The primary outcome was ICU mortality. We used univariate and multivariate logistic regression analyses to assess the impact of these variables on ICU mortality.
RESULTS: In total, 202 patients with ARDS were included; 56 (28%) of these received aspirin either pre-hospital, in the ICU, or both. Using multivariate logistic regression analysis, aspirin therapy, given either before or during hospital stay, was associated with a reduction in ICU mortality (odds ratio (OR) 0.38 (0.15 to 0.96) P = 0.04). Additional factors that predicted ICU mortality for patients with ARDS were vasopressor use (OR 2.09 (1.05 to 4.18) P = 0.04) and APACHE II score (OR 1.07 (1.02 to 1.13) P = 0.01). There was no effect upon ICU length of stay or hospital mortality.
CONCLUSION: Aspirin therapy was associated with a reduced risk of ICU mortality. These data are the first to demonstrate a potential protective role for aspirin in patients with ARDS. Clinical trials to evaluate the role of aspirin as a pharmacological intervention for ARDS are needed.
Resumo:
Both polygenicity (many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield an inflated distribution of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from a true polygenic signal and bias. We have developed an approach, LD Score regression, that quantifies the contribution of each by examining the relationship between test statistics and linkage disequilibrium (LD). The LD Score regression intercept can be used to estimate a more powerful and accurate correction factor than genomic control. We find strong evidence that polygenicity accounts for the majority of the inflation in test statistics in many GWAS of large sample size.
Resumo:
Statistics are regularly used to make some form of comparison between trace evidence or deploy the exclusionary principle (Morgan and Bull, 2007) in forensic investigations. Trace evidence are routinely the results of particle size, chemical or modal analyses and as such constitute compositional data. The issue is that compositional data including percentages, parts per million etc. only carry relative information. This may be problematic where a comparison of percentages and other constraint/closed data is deemed a statistically valid and appropriate way to present trace evidence in a court of law. Notwithstanding an awareness of the existence of the constant sum problem since the seminal works of Pearson (1896) and Chayes (1960) and the introduction of the application of log-ratio techniques (Aitchison, 1986; Pawlowsky-Glahn and Egozcue, 2001; Pawlowsky-Glahn and Buccianti, 2011; Tolosana-Delgado and van den Boogaart, 2013) the problem that a constant sum destroys the potential independence of variances and covariances required for correlation regression analysis and empirical multivariate methods (principal component analysis, cluster analysis, discriminant analysis, canonical correlation) is all too often not acknowledged in the statistical treatment of trace evidence. Yet the need for a robust treatment of forensic trace evidence analyses is obvious. This research examines the issues and potential pitfalls for forensic investigators if the constant sum constraint is ignored in the analysis and presentation of forensic trace evidence. Forensic case studies involving particle size and mineral analyses as trace evidence are used to demonstrate the use of a compositional data approach using a centred log-ratio (clr) transformation and multivariate statistical analyses.
Resumo:
Histone deacetylases (HDACs) are enzymes involved in transcriptional repression. We aimed to examine the significance of HDAC1 and HDAC2 gene expression in the prediction of recurrence and survival in 156 patients with hepatocellular carcinoma (HCC) among a South East Asian population who underwent curative surgical resection in Singapore. We found that HDAC1 and HDAC2 were upregulated in the majority of HCC tissues. The presence of HDAC1 in tumor tissues was correlated with poor tumor differentiation. Notably, HDAC1 expression in adjacent non-tumor hepatic tissues was correlated with the presence of satellite nodules and multiple lesions, suggesting that HDAC1 upregulation within the field of HCC may contribute to tumor spread. Using competing risk regression analysis, we found that increased cancer-specific mortality was significantly associated with HDAC2 expression. Mortality was also increased with high HDAC1 expression. In the liver cancer cell lines, HEP3B, HEPG2, PLC5, and a colorectal cancer cell line, HCT116, the combined knockdown of HDAC1 and HDAC2 increased cell death and reduced cell proliferation as well as colony formation. In contrast, knockdown of either HDAC1 or HDAC2 alone had minimal effects on cell death and proliferation. Taken together, our study suggests that both HDAC1 and HDAC2 exert pro-survival effects in HCC cells, and the combination of isoform-specific HDAC inhibitors against both HDACs may be effective in targeting HCC to reduce mortality.
Resumo:
Dissertação de mestrado, Qualidade em Análises, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.
Resumo:
To explore, for the first time, the impact of job insecurity on sexual desire. Cross-sectional analysis of a nationally representative sample of 7247 individuals aged 20-64 years working as full or part-time employees in Switzerland. The logistic regression analysis showed that workers aged 20-49 years perceiving high levels of job insecurity are exposed to a significantly higher risk of decrease of sexual desire compared to the reference group. The risk is 53% higher among men (OR 1.53; 95% CI 1.16-2.01) and 47% for woman (OR 1.47; 1.13-1.91). No increased risk was found for employees aged 50-64 years old. An increasing fear of job loss is associated with a deterioration in sexual desire. These first preliminary findings should promote further epidemiological and clinical prospective studies on the impact of job insecurity on intimate relationships and sexual dysfunction.
Resumo:
Diabetes mellitus is a disease where the glucosis-content of the blood does not automatically decrease to a ”normal” value between 70 mg/dl and 120 mg/dl (3,89 mmol/l and 6,67 mmol/l) between perhaps one hour (or two hours) after eating. Several instruments can be used to arrive at a relative low increase of the glucosis-content. Besides drugs (oral antidiabetica, insulin) the blood-sugar content can mainly be influenced by (i) eating, i.e., consumption of the right amount of food at the right time (ii) physical training (walking, cycling, swimming). In a recent paper the author has performed a regression analysis on the influence of eating during the night. The result was that one ”bread-unit” (12g carbon-hydrats) increases the blood-sugar by about 50 mg/dl, while one hour after eating the blood-sugar decreases by about 10 mg/dl per hour. By applying this result-assuming its correctness - it is easy to eat the right amount during the night and to arrive at a fastening blood-sugar (glucosis-content) in the morning of about 100 mg/dl (5,56 mmol/l). In this paper we try to incorporate some physical exercise into the model.
Resumo:
Motivated by a matched case-control study to investigate potential risk factors for meningococcal disease amongst adolescents, we consider the analysis of matched case-control studies where disease incidence, and possibly other risk factors, vary with time of year. For the cases, the time of infection may be recorded. For controls, however, the recorded time is simply the time of data collection, which is shortly after the time of infection for the matched case, and so depends on the latter. We show that the effect of risk factors and interactions may be adjusted for the time of year effect in a standard conditional logistic regression analysis without introducing any bias. We also show that, if the time delay between data collection for cases and controls is constant, provided this delay is not very short, estimates of the time of year effect are approximately unbiased. In the case that the length of the delay varies over time, the estimate of the time of year effect is biased. We obtain an approximate expression for the degree of bias in this case. Copyright © 2004 John Wiley & Sons, Ltd.
Resumo:
This chapter applies rigorous statistical analysis to existing datasets of medieval exchange rates quoted in merchants’ letters sent from Barcelona, Bruges and Venice between 1380 and 1310, which survive in the archive of Francesco di Marco Datini of Prato. First, it tests the exchange rates for stationarity. Second, it uses regression analysis to examine the seasonality of exchange rates at the three financial centres and compares them against contemporary descriptions by the merchant Giovanni di Antonio da Uzzano. Third, it tests for structural breaks in the exchange rate series.
Resumo:
The present study aims to contribute to an understanding of the complexity of lobbying activities within the accounting standard-setting process in the UK. The paper reports detailed content analysis of submission letters to four related exposure drafts. These preceded two accounting standards that set out the concept of control used to determine the scope of consolidation in the UK, except for reporting under international standards. Regulation on the concept of control provides rich patterns of lobbying behaviour due to its controversial nature and its significance to financial reporting. Our examination is conducted by dividing lobbyists into two categories, corporate and non-corporate, which are hypothesised (and demonstrated) to lobby differently. In order to test the significance of these differences we apply ANOVA techniques and univariate regression analysis. Corporate respondents are found to devote more attention to issues of specific applicability of the concept of control, whereas non-corporate respondents tend to devote more attention to issues of general applicability of this concept. A strong association between the issues raised by corporate respondents and their line of business is revealed. Both categories of lobbyists are found to advance conceptually-based arguments more often than economic consequences-based or combined arguments. However, when economic consequences-based arguments are used, they come exclusively from the corporate category of respondents.