989 resultados para REDUCING BACTERIA
Resumo:
In recent years, new methods of clean and environmentally friendly energy production have been the focus of intense research efforts. Microbial fuel cells (MFCs) are devices that utilize naturally occurring microorganisms that feed on organic matter, like waste water, while producing electrical energy. The natural habitats of bacteria thriving in microbial fuel cells are usually marine and freshwater sediments. These microorganisms are called dissimilatory metal reducing bacteria (DMRB), but in addition to metals like iron and manganese, they can use organic compounds like DMSO or TMAO, radionuclides and electrodes as terminal electron acceptors in their metabolic pathways.(...)
Resumo:
Les thiols et le sélénium peuvent jouer un rôle important dans la méthylation du mercure des environnements aquatiques. Pour démontrer la présence des thiols et du sélénium et leur relation avec le mercure dans certains écosystèmes d'eau douce québécois, une campagne d’échantillonnage fut réalisée durant l’été 2010, dans le parc national du Mont-Tremblant (Laurentides, Québec). Il existe une corrélation significative entre le sélénium et le mercure total dans l’eau des lacs du parc. Cependant, les concentrations de sélénium sont très faibles dans les lacs, les étangs de castor et les ruisseaux. Par ailleurs, les lacs du parc national du Mont-Tremblant ont des concentrations relativement élevées de méthylmercure avec une moyenne de 0,33 ng L-1 et des maximums allant jusqu’à 3,29 ng L-1. Les étangs de castor peuvent aussi être considérés comme des lieux de contamination au méthylmercure, avec une concentration moyenne de 0,95 ng L-1. Toutefois, la présence d’une colonie de castors sur le bassin versant d’un lac ne semble pas influencer les concentrations de mercure que l’on y retrouve. Deux thiols sont détectables dans l’eau de surface des Laurentides, soit le glutathion et l’acide thioglycolique. La concentration de ce dernier thiol est corrélée significativement avec celle du mercure total et du méthylmercure. Les thiols peuvent jouer un rôle important dans les processus de méthylation en favorisant le transport du mercure inorganique à l’intérieur des bactéries sulfato-réductrices. Afin de mieux comprendre l’action antagoniste entre le sélénium et le mercure, des études devraient être réalisées au niveau des tissus des organismes vivants dans ces zones pauvres en sélénium.
Resumo:
Perchlorate-reducing bacteria fractionate chlorine stable isotopes giving a powerful approach to monitor the extent of microbial consumption of perchlorate in contaminated sites undergoing remediation or natural perchlorate containing sites. This study reports the full experimental data and methodology used to re-evaluate the chlorine isotope fractionation of perchlorate reduction in duplicate culture experiments of Azospira suillum strain PS at 37 degrees C (Delta Cl-37(Cr)--ClO4-) previously reported, without a supporting data set by Coleman et al. [Coleman, M.L., Ader, M., Chaudhuri, S., Coates,J.D., 2003. Microbial Isotopic Fractionation of Perchlorate Chlorine. Appl. Environ. Microbiol. 69, 4997-5000] in a reconnaissance study, with the goal of increasing the accuracy and precision of the isotopic fractionation determination. The method fully described here for the first time, allows the determination of a higher precision Delta Cl-37(Cl)--ClO4- value, either from accumulated chloride content and isotopic composition or from the residual perchlorate content and isotopic composition. The result sets agree perfectly, within error, giving average Delta Cl-37(Cl)--ClO4- = -14.94 +/- 0.15%omicron. Complementary use of chloride and perchlorate data allowed the identification and rejection of poor quality data by applying mass and isotopic balance checks. This precise Delta Cl-37(Cl)--ClO4-, value can serve as a reference point for comparison with future in situ or microcosm studies but we also note its similarity to the theoretical equilibrium isotopic fractionation between a hypothetical chlorine species of redox state +6 and perchlorate at 37 degrees C and suggest that the first electron transfer during perchlorate reduction may occur at isotopic equilibrium between art enzyme-bound chlorine and perchlorate. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Preface. Iron is considered to be a minor element employed, in a variety of forms, by nearly all living organisms. In some cases, it is utilised in large quantities, for instance for the formation of magnetosomes within magnetotactic bacteria or during use of iron as a respiratory donor or acceptor by iron oxidising or reducing bacteria. However, in most cases the role of iron is restricted to its use as a cofactor or prosthetic group assisting the biological activity of many different types of protein. The key metabolic processes that are dependent on iron as a cofactor are numerous; they include respiration, light harvesting, nitrogen fixation, the Krebs cycle, redox stress resistance, amino acid synthesis and oxygen transport. Indeed, it is clear that Life in its current form would be impossible in the absence of iron. One of the main reasons for the reliance of Life upon this metal is the ability of iron to exist in multiple redox states, in particular the relatively stable ferrous (Fe2+) and ferric (Fe3+) forms. The availability of these stable oxidation states allows iron to engage in redox reactions over a wide range of midpoint potentials, depending on the coordination environment, making it an extremely adaptable mediator of electron exchange processes. Iron is also one of the most common elements within the Earth’s crust (5% abundance) and thus is considered to have been readily available when Life evolved on our early, anaerobic planet. However, as oxygen accumulated (the ‘Great oxidation event’) within the atmosphere some 2.4 billion years ago, and as the oceans became less acidic, the iron within primordial oceans was converted from its soluble reduced form to its weakly-soluble oxidised ferric form, which precipitated (~1.8 billion years ago) to form the ‘banded iron formations’ (BIFs) observed today in Precambrian sedimentary rocks around the world. These BIFs provide a geological record marking a transition point away from the ancient anaerobic world towards modern aerobic Earth. They also indicate a period over which the bio-availability of iron shifted from abundance to limitation, a condition that extends to the modern day. Thus, it is considered likely that the vast majority of extant organisms face the common problem of securing sufficient iron from their environment – a problem that Life on Earth has had to cope with for some 2 billion years. This struggle for iron is exemplified by the competition for this metal amongst co-habiting microorganisms who resort to stealing (pirating) each others iron supplies! The reliance of micro-organisms upon iron can be disadvantageous to them, and to our innate immune system it represents a chink in the microbial armour, offering an opportunity that can be exploited to ward off pathogenic invaders. In order to infect body tissues and cause disease, pathogens must secure all their iron from the host. To fight such infections, the host specifically withdraws available iron through the action of various iron depleting processes (e.g. the release of lactoferrin and lipocalin-2) – this represents an important strategy in our defence against disease. However, pathogens are frequently able to deploy iron acquisition systems that target host iron sources such as transferrin, lactoferrin and hemoproteins, and thus counteract the iron-withdrawal approaches of the host. Inactivation of such host-targeting iron-uptake systems often attenuates the pathogenicity of the invading microbe, illustrating the importance of ‘the battle for iron’ in the infection process. The role of iron sequestration systems in facilitating microbial infections has been a major driving force in research aimed at unravelling the complexities of microbial iron transport processes. But also, the intricacy of such systems offers a challenge that stimulates the curiosity. One such challenge is to understand how balanced levels of free iron within the cytosol are achieved in a way that avoids toxicity whilst providing sufficient levels for metabolic purposes – this is a requirement that all organisms have to meet. Although the systems involved in achieving this balance can be highly variable amongst different microorganisms, the overall strategy is common. On a coarse level, the homeostatic control of cellular iron is maintained through strict control of the uptake, storage and utilisation of available iron, and is co-ordinated by integrated iron-regulatory networks. However, much yet remains to be discovered concerning the fine details of these different iron regulatory processes. As already indicated, perhaps the most difficult task in maintaining iron homeostasis is simply the procurement of sufficient iron from external sources. The importance of this problem is demonstrated by the plethora of distinct iron transporters often found within a single bacterium, each targeting different forms (complex or redox state) of iron or a different environmental condition. Thus, microbes devote considerable cellular resource to securing iron from their surroundings, reflecting how successful acquisition of iron can be crucial in the competition for survival. The aim of this book is provide the reader with an overview of iron transport processes within a range of microorganisms and to provide an indication of how microbial iron levels are controlled. This aim is promoted through the inclusion of expert reviews on several well studied examples that illustrate the current state of play concerning our comprehension of how iron is translocated into the bacterial (or fungal) cell and how iron homeostasis is controlled within microbes. The first two chapters (1-2) consider the general properties of microbial iron-chelating compounds (known as ‘siderophores’), and the mechanisms used by bacteria to acquire haem and utilise it as an iron source. The following twelve chapters (3-14) focus on specific types of microorganism that are of key interest, covering both an array of pathogens for humans, animals and plants (e.g. species of Bordetella, Shigella, , Erwinia, Vibrio, Aeromonas, Francisella, Campylobacter and Staphylococci, and EHEC) as well as a number of prominent non-pathogens (e.g. the rhizobia, E. coli K-12, Bacteroides spp., cyanobacteria, Bacillus spp. and yeasts). The chapters relay the common themes in microbial iron uptake approaches (e.g. the use of siderophores, TonB-dependent transporters, and ABC transport systems), but also highlight many distinctions (such as use of different types iron regulator and the impact of the presence/absence of a cell wall) in the strategies employed. We hope that those both within and outside the field will find this book useful, stimulating and interesting. We intend that it will provide a source for reference that will assist relevant researchers and provide an entry point for those initiating their studies within this subject. Finally, it is important that we acknowledge and thank wholeheartedly the many contributors who have provided the 14 excellent chapters from which this book is composed. Without their considerable efforts, this book, and the understanding that it relays, would not have been possible. Simon C Andrews and Pierre Cornelis
Resumo:
AIM: To investigate the effect of native, heated and glycated bovine serum albumin (BSA) on the ulcerative colitis (UC) and non-UC colonic microbiota in vitro. METHODS AND RESULTS: Continuous flow culture (CFC) models of the human colonic microbiota inoculated with faeces from UC and non-UC volunteers were maintained on BSA as growth substrate. Changes in bacterial populations and short-chain fatty acids were determined. UC and non-UC microbiota differed significantly in microbial populations, with elevated numbers of sulfate-reducing bacteria (SRB) and clostridia in the microbiota from UC patients. Compared with native BSA, glycated BSA modulated the gut microbiota of UC patients in vitro towards a more detrimental community structure with significant increases in putatively harmful bacteria (clostridia, bacteroides and SRB; P < 0.009) and decreases in dominant and putatively beneficial bacterial groups (eubacteria and bifidobacteria; P < 0.0004). The levels of beneficial short-chain fatty acids were significantly decreased by heated or glycated BSA, but were increased significantly by native BSA. CONCLUSION: The UC colonic microbiota maintained in CFC was significantly modified by glycated BSA. SIGNIFICANCE AND IMPACT OF THE STUDY: Results suggest that dietary glycated protein may impact upon the composition and activity of the colonic microbiota, an important environmental variable in UC.
Resumo:
Aim: To investigate the effect of native, heated and glycated bovine serum albumin (BSA) on the ulcerative colitis (UC) and non-UC colonic microbiota in vitro. Methods and Results: Continuous flow culture (CFC) models of the human colonic microbiota inoculated with faeces from UC and non-UC volunteers were maintained on BSA as growth substrate. Changes in bacterial populations and short-chain fatty acids were determined. UC and non-UC microbiota differed significantly in microbial populations, with elevated numbers of sulfate-reducing bacteria (SRB) and clostridia in the microbiota from UC patients. Compared with native BSA, glycated BSA modulated the gut microbiota of UC patients in vitro towards a more detrimental community structure with significant increases in putatively harmful bacteria (clostridia, bacteroides and SRB; P < 0.009) and decreases in dominant and putatively beneficial bacterial groups (eubacteria and bifidobacteria; P < 0.0004). The levels of beneficial short-chain fatty acids were significantly decreased by heated or glycated BSA, but were increased significantly by native BSA. Conclusion: The UC colonic microbiota maintained in CFC was significantly modified by glycated BSA. Significance and Impact of the Study: Results suggest that dietary glycated protein may impact upon the composition and activity of the colonic microbiota, an important environmental variable in UC.
Resumo:
Inflammatory bowel disease (IBD) is a common gastrointestinal disorder of cats with no known aetiological agent. Previous work has suggested that the faecal microbiota of IBD cats is significantly different from that of healthy cats, including significantly lower bifidobacteria, bacteroides and total counts in IBD cats and significantly lower levels of sulfate-reducing bacteria in healthy cats. Prebiotics, including galactooligosaccharides (GOS), have been shown to elicit a bifidogenic effect in humans and other animals. The purpose of the current study was to examine the impact of a novel GOS supplementation on the faecal microbiota of healthy and IBD cats during a randomized, double-blind, cross-over feeding study. Eight oligonucleotide probes targeting specific bacterial populations and DAPI stain (total bacteria) were used to monitor the feline faecal microbiota. Overall, inter-animal variation was high; while a trend of increased bifidobacterial levels was seen with GOS supplementation it was not statistically significant in either healthy or IBD cats. No significant differences were observed in the faecal microbiota of IBD cats and healthy cats fed the same diet. Members of the family Coriobacteriaceae (Atopobium cluster) were found to be the most abundant bacteria in the feline microbiota.
Resumo:
Diarrhoea is a common problem in dogs and can result in disturbance of the normal intestinal microbiota. However, little is known about the gastrointestinal microbiota of dogs with chronic diarrhoea and controlled canine studies of dietary management are scarce. The aims of this study were to investigate the predominant faecal microbiota of chronic diarrhoea dogs and to examine the effect(s) of a fibre blend on the canine faecal microbiota. A 3-week fibre supplementation feeding study was performed in nine chronic diarrhoea and eight control dogs. Atopobium cluster, Lactobacillus-Enterococcus group and Clostridium cluster XIV were the predominant bacterial groups in all dogs. Chronic diarrhoea dogs had significantly higher Bacteroides counts at baseline and significantly lower Atopobium cluster counts following fibre supplementation compared with control dogs. Atopobium cluster levels increased significantly in control dogs, while counts of sulphate-reducing bacteria decreased significantly and Clostridium clusters I and II counts increased significantly in chronic diarrhoea dogs during fibre supplementation. Microbial profiles (detected by denaturing gradient gel electrophoresis) demonstrated interindividual variation, with greater similarity seen between the chronic diarrhoea and control dogs' profiles after fibre supplementation compared with baseline. In conclusion, fibre supplementation induced changes in the canine faecal microbiota, with greater resemblance between the microbiota of chronic diarrhoea and control dogs after this dietary modulation.
Resumo:
The polychaete worm Nereis diversicolor engineers its environment by creating oxygenated burrows in anoxic intertidal sediments. The authors carried out a laboratory microcosm experiment to test the impact of polychaete burrowing and feeding activity on the lability and methylation of mercury in sediments from the Bay of Fundy, Canada. The concentration of labile inorganic mercury and methylmercury in burrow walls was elevated compared to worm-free sediments. Mucus secretions and organic detritus in worm burrows increased labile mercury concentrations. Worms decreased sulfide concentrations, which increased Hg bioavailability to sulfate-reducing bacteria and increased methylmercury concentrations in burrow linings. Because the walls of polychaete burrows have a greater interaction with organisms, and the overlying water, the concentrations of mercury and methylmercury they contain is more toxicologically relevant to the base of a coastal food web than bulk samples. The authors recommend that researchers examining Hg in marine environments account for sediment dwelling invertebrate activity to more fully assess mercury bioavailability.
Resumo:
Methylamine and sulfate are compounds commonly found in wastewaters. This study aimed to determine the methanogenic potential of anaerobic reactors containing these compounds and to correlate it with their microbial communities. Batch experiments were performed at different methylamine/sulfate ratios of 0.71, 1.26 and 2.18 (with respect to mass concentration). Control and experimental runs were inoculated with fragmented granular sludge. The maximum specific methane formation rates were approximately 2.3 mmol CH4 L-1 g TVS-1 day-1 for all conditions containing methylamine, regardless of sulfate addition. At the end of the experiment, total ammonium-N and methane formation were proportional to the initial concentrations of methylamine. In the presence of methylamine and sulfate, Firmicutes (46%), Deferribacteres (13%) and Proteobacteria (12%) were the predominant phyla of the Bacteria domain, while Spirochaetes (40%), Deferribacteres (17%) and Bacteroidetes (16%) predominated in the presence of methylamine only. There was no competition for methylamine between sulfate-reducing bacteria and methanogenic archaea.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H2S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments.
Resumo:
The aim of this work was to identify groups of microorganisms that are capable of degrading organic matter utilizing sulfate as an electron acceptor. The assay applied for this purpose consisted of running batch reactors and monitoring lactate consumption, sulfate reduction and sulfide production. A portion of the lactate added to the batch reactors was consumed, and the remainder was converted into acetic, propionic and butyric acid after 111 hours of operation These results indicate the presence of sulfate-reducing bacteria (SRB) catalyzing both complete and incomplete oxidation of organic substrates. The sulfate removal efficiency was 49.5% after 1335 hours of operation under an initial sulfate concentration of 1123 mg/L. The SRB concentrations determined by the most probable number (MPN) method were 9.0x10(7) cells/mL at the beginning of the assay and 8.0x10(5) cells/mL after 738 hours of operation.
Resumo:
Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of Sao Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.
Resumo:
A bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactor was used to study the treatment of acid mine drainage through the biological reduction of sulfate. The reactor was fed with acid mine drainage collected at the Osamu Utsumi uranium mine (Caldas, MG, Brazil) and supplemented with ethanol as an external carbon source. Anaerobic granular sludge originating from a reactor treating poultry slaughterhouse wastewater was used as the inoculum. The reactor's performance was studied according to variations in the chemical oxygen demand (COD)/SO42- ratio, influent dilution and liquid-phase recirculation. The digestion of a dilution of the acid mine drainage resulted in a 46.3% removal of the sulfate and an increase in the effluent pH (COD/SO42- = 0.67). An increase in the COD/SO42- ratio to 1.0 resulted in an 85.6% sulfate reduction. The reduction of sulfate through complete oxidation of the ethanol was the predominant path in the reactor, although the removal of COD was not greater than 68% in any of the operational stages. The replenishment of the liquid phase with tap water positively affected the reactor, whereas the recirculation of treated effluent caused disequilibrium and decreased efficiency. (C) 2012 Elsevier Ltd. All rights reserved.